SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 1 hour ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

The three scientific cultures and their relevance to Biology

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 2 hours ago. 1 Reply

Researchers who study Earth's biosphere tend to operate from one of three scientific cultures, each with distinct ways of conducting science, and which have been operating mostly independently from…Continue

Baking powder and baking soda

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 2 hours ago. 1 Reply

Q; What is the difference between using fermentation method and baking soda while preparing food?Q: Is it harmful to use baking powder and baking soda while preparing food?Krishna: Fermentation is an…Continue

Light can vaporize water without the need for heat!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 3 hours ago. 1 Reply

It's the most fundamental of processes—the evaporation of water from the surfaces of oceans and lakes, the burning off of fog in the morning sun, and the drying of briny ponds that leaves solid salt…Continue

Metal cutting by lasers

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 5 hours ago. 1 Reply

Q: Can other metals be impenetrable, resistant and/or immune to lasers?Krishna: …Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa 2 hours ago

The authors tested variations of a fast-pulsing laser treatment to achieve the optimal balance of characteristics in the cork that can be achieved at low cost.

They closely examined nanoscopic structural changes and measured the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling.

The photothermal properties endowed in cork through this laser processing allow the cork to warm quickly in the sun. The deep grooves also increase the surface area exposed to sunlight, so the cork can be warmed by just a little sunlight in 10–15 seconds. This energy is used to heat up spilled oil, lowering its viscosity and making it easier to collect. In experiments, the laser-treated cork collected oil out of water within two minutes.

The laser treatments not only help to better absorb oil, but also work to keep water out.
When the cork undergoes a fast-pulsing laser treatment, its surface microstructure becomes rougher. This micro- to nano-level roughness enhances hydrophobicity.

As a result, the cork collects the oil without absorbing water, so the oil can be extracted from the cork and possibly even reused.

Femtosecond laser structured black superhydrophobic cork for efficient solar-driven cleanup of crude oil, Applied Physics Letters (2024). DOI: 10.1063/5.0199291

Part 2

Comment by Dr. Krishna Kumari Challa 2 hours ago

Laser-treated cork absorbs oil for carbon-neutral ocean cleanup

Oil spills are deadly disasters for ocean ecosystems. They can have lasting impacts on fish and marine mammals for decades and wreak havoc on coastal forests, coral reefs, and the surrounding land. Chemical dispersants are often used to break down oil, but they often increase toxicity in the process.

In Applied Physics Letters, researchers  published their work using laser treatments to transform ordinary cork  into a powerful tool for treating oil spills.

They wanted to create a nontoxic, effective oil cleanup solution using materials with a low carbon footprint, but their decision to try cork resulted from a surprising discovery.

In a different laser experiment, they accidentally found that the wettability of the cork processed using a laser changed significantly, gaining superhydrophobic (water-repelling) and superoleophilic (oil-attracting) properties. After appropriately adjusting the processing parameters, the surface of the cork became very dark, which made them realize that it might be an excellent material for photothermal conversion.

Combining these results with the eco-friendly, recyclable advantages of cork, they thought of using it for marine oil spill cleanup.

Cork comes from the bark of cork oak trees, which can live for hundreds of years. These trees can be harvested about every seven years, making cork a renewable material. When the bark is removed, the trees amplify their biological activity to replace it and increase their carbon storage, so harvesting cork helps mitigate carbon emissions. Part 1
Comment by Dr. Krishna Kumari Challa 3 hours ago

Researchers detect a new molecule in space

New research has revealed the presence of a previously unknown molecule in space. The open-access paper describing it, "Rotational Spectrum and First Interstellar Detection of 2-Methoxyethanol Using ALMA Observations of NGC 6334I," was published in the April 12 issue of The Astrophysical Journal Letters.

Researchers worked to assemble a puzzle comprised of pieces collected from across the globe, extending beyond MIT to France, Florida, Virginia, and Copenhagen, to achieve this exciting discovery.

To detect new molecules in space, researchers first must have an idea of what molecule they want to look for, then they can record its spectrum in the lab here on Earth, and then finally they look for that spectrum in space using telescopes.

To detect this molecule using radio telescope observations, the group first needed to measure and analyze its rotational spectrum on Earth. The researchers combined experiments from the University of Lille (Lille, France), the New College of Florida (Sarasota, Florida), and the McGuire lab at MIT to measure this spectrum over a broadband region of frequencies ranging from the microwave to sub-millimeter wave regimes (approximately 8 to 500 gigahertz).

The data gleaned from these measurements permitted a search for the molecule using Atacama Large Millimeter/submillimeter Array (ALMA) observations toward two separate star-forming regions: NGC 6334I and IRAS 16293-2422B. Members of the group analyzed these telescope observations alongside researchers at the National Radio Astronomy Observatory (Charlottesville, Virginia) and the University of Copenhagen, Denmark.

Ultimately, they observed 25 rotational lines of 2-methoxyethanol that lined up with the molecular signal observed toward NGC 6334I (the barcode matched), thus resulting in a secure detection of 2-methoxyethanol in this source.This allowed them to then derive physical parameters of the molecule toward NGC 6334I, such as its abundance and excitation temperature. It also enabled an investigation of the possible chemical formation pathways from known interstellar precursors.
Molecular discoveries like this one help the researchers to better understand the development of molecular complexity in space during the star formation process. 2-methoxyethanol, which contains 13 atoms, is quite large for interstellar standards—as of 2021, only six species larger than 13 atoms were detected outside the solar system, many by this research group, and all of them existing as ringed structures.
Continued observations of large molecules and subsequent derivations of their abundances allows scientists to advance our knowledge of how efficiently large molecules can form and by which specific reactions they may be produced.

Zachary T. P. Fried et al, Rotational Spectrum and First Interstellar Detection of 2-methoxyethanol Using ALMA Observations of NGC 6334I, The Astrophysical Journal Letters (2024). DOI: 10.3847/2041-8213/ad37ff

Comment by Dr. Krishna Kumari Challa 4 hours ago

There are many lines of evidence. The flat region in the air-side temperature distribution above hot water will be the easiest for people to reproduce. That temperature profile "is a signature" that demonstrates the effect clearly.
It is quite hard to explain how this kind of flat temperature profile comes about without invoking some other mechanism" beyond the accepted theories of thermal evaporation.
The observations in the manuscript points to a new physical mechanism that foundationally alters our thinking on the kinetics of evaporation.

Guangxin Lv et al, Photomolecular effect: Visible light interaction with air–water interface, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2320844121

Part 4

Comment by Dr. Krishna Kumari Challa 4 hours ago

researchers have proposed a physical mechanism that can explain the angle and polarization dependence of the effect, showing that the photons of light can impart a net force on water molecules at the water surface that is sufficient to knock them loose from the body of water. But they cannot yet account for the color dependence, which they say will require further study.

They have named this the photomolecular effect, by analogy with the photoelectric effect that was discovered by Heinrich Hertz in 1887 and finally explained by Albert Einstein in 1905. That effect was one of the first demonstrations that light also has particle characteristics, which had major implications in physics and led to a wide variety of applications, including LEDs. Just as the photoelectric effect liberates electrons from atoms in a material in response to being hit by a photon of light, the photomolecular effect shows that photons can liberate entire molecules from a liquid surface, the researchers say.

The finding of evaporation caused by light instead of heat provides new disruptive knowledge of light-water interaction.
It could help us gain new understanding of how sunlight interacts with cloud, fog, oceans, and other natural water bodies to affect weather and climate. It has significant potential practical applications such as high-performance water desalination driven by solar energy.
The finding may solve an 80-year-old mystery in climate science. Measurements of how clouds absorb sunlight have often shown that they are absorbing more sunlight than conventional physics dictates possible. The additional evaporation caused by this effect could account for the longstanding discrepancy, which has been a subject of dispute since such measurements are difficult to make.

Those experiments are based on satellite data and flight data. They fly an airplane on top of and below the clouds, and there are also data based on the ocean temperature and radiation balance. And they all conclude that there is more absorption by clouds than theory could calculate. However, due to the complexity of clouds and the difficulties of making such measurements, researchers have been debating whether such discrepancies are real or not. And what was discovered now suggests that hey, there's another mechanism for cloud absorption, which was not accounted for, and this mechanism might explain the discrepancies.
Part 3

Comment by Dr. Krishna Kumari Challa 4 hours ago

The new work builds on research reported* last year, which described this new "photomolecular effect" but only under very specialized conditions: on the surface of specially prepared hydrogels soaked with water. In the new study, the researchers demonstrate that the hydrogel is not necessary for the process; it occurs at any water surface exposed to light, whether it's a flat surface like a body of water or a curved surface like a droplet of cloud vapour.

Because the effect was so unexpected, the team worked to prove its existence with as many different lines of evidence as possible. In this study, they report 14 different kinds of tests and measurements they carried out to establish that water was indeed evaporating—that is, molecules of water were being knocked loose from the water's surface and wafted into the air—due to the light alone, not by heat, which was long assumed to be the only mechanism involved.

One key indicator, which showed up consistently in four different kinds of experiments under different conditions, was that as the water began to evaporate from a test container under visible light, the air temperature measured above the water's surface cooled down and then leveled off, showing that thermal energy was not the driving force behind the effect.

Other key indicators that showed up included the way the evaporation effect varied depending on the angle of the light, the exact color of the light, and its polarization. None of these varying characteristics should happen because at these wavelengths, water hardly absorbs light at all—and yet the researchers observed them.

The effect is strongest when light hits the water surface at an angle of 45 degrees. It is also strongest with a certain type of polarization, called transverse magnetic polarization. And it peaks in green light—which, oddly, is the color for which water is most transparent and thus interacts the least.

Yaodong Tu et al, Plausible photomolecular effect leading to water evaporation exceeding the thermal limit, Proceedings of the National Academy of Sciences (2023). DOI: 10.1073/pnas.2312751120

Part 2
Comment by Dr. Krishna Kumari Challa 4 hours ago

How light can vaporize water without the need for heat

It's the most fundamental of processes—the evaporation of water from the surfaces of oceans and lakes, the burning off of fog in the morning sun, and the drying of briny ponds that leaves solid salt behind. Evaporation is all around us, and humans have been observing it and making use of it for as long as we have existed.

And yet, it turns out, we've been missing a major part of the picture all along.

In a series of painstakingly precise experiments, a team of researchers  has demonstrated that heat isn't alone in causing water to evaporate. Light, striking the water's surface where air and water meet, can break water molecules away and float them into the air, causing evaporation in the absence of any source of heat.

The astonishing new discovery could have a wide range of significant implications. It could help explain mysterious measurements over the years of how sunlight affects clouds, and therefore affect calculations of the effects of climate change on cloud cover and precipitation. It could also lead to new ways of designing industrial processes such as solar-powered desalination or drying of materials.

The findings, and the many different lines of evidence that demonstrate the reality of the phenomenon and the details of how it works, are described recently in the Proceedings of the National Academy of Sciences.

The authors say their study suggests that the effect should happen widely in nature—everywhere from clouds to fogs to the surfaces of oceans, soils, and plants—and that it could also lead to new practical applications, including in energy and clean water production.

Part 1

Comment by Dr. Krishna Kumari Challa 4 hours ago

Study suggests that living near green spaces reduces the risk of depression and anxiety

Over the past decades, a growing number of people have migrated to urban areas, while the size and population of rural areas have drastically declined. While parks and other green spaces are often viewed as beneficial for the well-being of those living in cities and urban regions, so far very few studies have explored the impact of these spaces on mental health.

Researchers recently carried out a study investigating the potential link between long-term exposure to green spaces in proximity of one's home and two of the most common mental health disorders: depression and anxiety. Their findings, published in Nature Mental Health, suggest that living close to parks and green areas can reduce the risk of becoming depressed and experiencing anxiety.

As part of their study, the researchers analyzed data gathered from 409,556 people and stored in the UK Biobank database. They specifically looked at the distance between participants and green areas, in conjunction with their self-reported well-being scores, as well as hospitalizations, hospital admissions, and deaths in their residential area.

The results of the analyses suggest that there is a link between prolonged proximity to residential green areas and the incidence of both depression and anxiety. Specifically, they suggest that living closer to parks and other green areas reduces the risk of experiencing both depression and anxiety.

Researchers draw the important conclusion that long-term exposure to residential greenness is associated with a decreased risk of incident depression and anxiety, and reduced air pollution in the greenest areas probably plays an important role in this trend. This  study thus implies that expanding urban green spaces could promote good mental health.

Jianing Wang et al, Long-term exposure to residential greenness and decreased risk of depression and anxiety, Nature Mental Health (2024). DOI: 10.1038/s44220-024-00227-z.

Comment by Dr. Krishna Kumari Challa yesterday

Our current measurements of the visible universe, in other words, are insufficient to confirm which side the hidden sector fell on at the beginning—hot or cold.

Nath is quick to point out that, rather than a failing of the experiment, this is an example of the mathematical models outrunning our current experimental capabilities.

It's not that the difference between a hot or cold hidden sector has no bearing on the visible universe, but that we haven't performed experiments—yet—with high enough precision. Nath mentions the Webb Telescope as one example of the next generation of tools that will be able to make such precise observations.

The ultimate goal of all this modeling work is to make better predictions about the state of the universe, how it all functions and what we'll find when we look deeper and deeper into the night sky.

As our experiments gain more accuracy, the questions baked into Nath's models—was the hidden sector hot or cold?—will find their answers, and those clarified models will help predict the solutions to ever-deeper questions.
"What's the significance of this?" Nath asks. Human beings, he says, "want to find their place in the universe." And more than that, "they want to answer the question, why is there a universe?

"And we are exploring those issues. It is the ultimate quest of human beings."

Jinzheng Li et al, Big bang initial conditions and self-interacting hidden dark matter, Physical Review D (2023). DOI: 10.1103/PhysRevD.108.115008

Part 4

**

Comment by Dr. Krishna Kumari Challa yesterday

One major variable is the temperature of the hidden sector during the Big Bang.

The visible sector, we can be fairly certain, started out very hot at the moment of the Big Bang. As the universe cools, Nath says, "what we see is the remnant of that period of the universe."

But by studying the evolution of the two sectors, Nath and his team could model both conditions—a hidden sector that started out hot, and another hidden sector that started out cold.

What they observed was surprising: Despite significant differences between the models, with major implications on what the universe looked like in early times, both the hot and cold models were consistent with the visible sector we can observe today.
part 3

 

Members (22)

 
 
 

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service