Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Load Previous Comments
  • Dr. Krishna Kumari Challa

    Research team discovers new property of light

    A research team headed by chemists  has discovered a previously unknown way in which light interacts with matter, a finding that could lead to improved solar power systems, light-emitting diodes, semiconductor lasers and other technological advancements.

     In a paper published recently in the journal ACS Nano, the scientists explain how they learned that photons can obtain substantial momentum, similar to that of electrons in solid materials, when confined to nanometer-scale spaces in silicon.

    Silicon is Earth's second-most abundant element, and it forms the backbone of modern electronics. However, being an indirect semiconductor, its utilization in optoelectronics has been hindered by poor optical properties.

    While silicon does not naturally emit light in its bulk form, porous and nanostructured silicon can produce detectable light after being exposed to visible radiation. Scientists have been aware of this phenomenon for decades, but the precise origins of the illumination have been the subject of debate.

    In 1923, Arthur Compton discovered that gamma photons possessed sufficient momentum to strongly interact with free or bound electrons. This helped prove that light had both wave and particle properties, a finding that led to Compton receiving the Nobel Prize in physics in 1927.

    In the present  experiments, researchers showed that the momentum of visible light confined to nanoscale silicon crystals produces a similar optical interaction in semiconductors.

    This discovery of photon momentum in disordered silicon is due to a form of electronic Raman scattering. But unlike conventional vibrational Raman, electronic Raman involves different initial and final states for the electron, a phenomenon previously only observed in metals.

    Sergey S. Kharintsev et al, Photon-Momentum-Enabled Electronic Raman Scattering in Silicon Glass, ACS Nano (2024). DOI: 10.1021/acsnano.3c12666

  • Dr. Krishna Kumari Challa

    Researchers show that slow-moving earthquakes are controlled by rock permeability

    Earthquakes are the most dramatic and noteworthy results of tectonic plate movement. They are often destructive and deadly, or at the very least physically felt—they're literally groundbreaking geological events. However not all tectonic movement results in effects that humans can perceive.

    Slow slip events occur when pent up tectonic forces are released over the course of a few days or months, like an earthquake unfolding in slow motion. The more gradual movement means people won't feel the earth shaking beneath their feet and buildings won't collapse. But the lack of destruction does not make slow slip events less scientifically important. In fact, their role in the earthquake cycle may help lead to a better model to predict when earthquakes happen.

    In a paper published recently in Geophysical Research Letters, a Jackson School of Geosciences research group explores how the makeup of rocks, specifically their permeability—or how easily fluids can flow through them—affects the frequency and intensity of slow slip events.

    Their tests showed how pores in the rocks could control the regular slow slip events at this subduction zone. Previous studies have suggested that a layer of impermeable rock at the top of the descending tectonic plate serves as a sealed lid, trapping fluid in the pores of underlying rock layers.

    As fluid accumulates beneath the seal, the pressure builds, eventually becoming high enough to trigger a slow slip event or earthquake. This event then breaks the impermeable seal, temporarily fracturing the rocks, allowing them to soak up fluids. Within a few months, the rocks heal and return to their initial permeability, and the cycle starts all over again.

    In this work,  for the first time, the researchers showed that using rocks that are representative of those at depth, that permeability is controlling slow slip events.

    Nicola Tisato et al, Permeability and Elastic Properties of Rocks From the Northern Hikurangi Margin: Implications for Slow‐Slip Events, Geophysical Research Letters (2024). DOI: 10.1029/2023GL103696

  • Dr. Krishna Kumari Challa

    What are nanoplastics? Concern is growing about particles too small to see

    It's become common to read/hear that microplastics—little bits of plastic, smaller than a pencil eraser—are turning up everywhere and in everything, including the ocean, farmland, food and human bodies. Now a new term is gaining attention: nanoplastics. These particles are even tinier than microplastics—so small that they're invisible to the naked eye.

    Nanoplastics are a type of microplastic, distinguished by their extremely small size. Microplastics are usually less than 5 millimeters across; nanoplastics are between 1 and 1,000 nanometers across. For comparison, an average human hair is roughly 80,000–100,000 nanometers wide.

    Nanoplastics are attracting growing concern thanks to recent technological advances that have made researchers more able to detect and analyze them. Their smaller size means that they are more easily transported over long distances and into more diverse environments than microplastics. They can more easily penetrate cells and tissues in living organisms, which could lead to different and more acute toxicological effects.

    Studies in the past two years have found nanoplastics in human blood, in liver and lung cells, and in reproductive tissues such as the placenta and the testes. Around the world, nanoplastics have been found in the air, in seawater, in snow and in soil.
    We already know that microplastics are present from the heights of Mount Everest to deep ocean trenches. Now there is growing evidence that nanoplastics are more prevalent than larger microplastics in the environment.