Science, Art, Litt, Science based Art & Science Communication
The superheavy elements, or those with atomic numbers above 104, also fit into this non-natural category. The larger the atom's nucleus — which increases with the number of protons inside — the more unstable that element is, generally. As such, these outsized elements are fleeting, lasting mere milliseconds before decaying into lighter elements, according to the IUPAC. For instance, superheavy elements 113, 115, 117 and 118 were verified by the IUPAC in December 2015, completing the seventh row, or period, on the table. Several different labs produced the superheavy elements. The atomic numbers, temporary names and official names are (2):
But is the stuff also worthy of the title "element zero"? Neutronium is theoretically devoid of protons, so on face value it fits the bill, as no protons would mean no atomic number. With that said, such a definition would certainly require some creative thinking. Neutronium only dwells under the crushing gravity of a neutron star. Extract a teaspoon of the stuff (roughly equal to the mass of a mountain) and it will decay almost instantly with "tremendous" radioactivity. To consider neutronium a stable element we'd almost need to think of a neutron star as an atomic nucleus (4).
Footnotes:
Tags:
45
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by