SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 15 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Men lose their Y chromosome as they age: Scientists earlier thought it didn't matter—but now we're learning more

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 15 hours ago. 1 Reply

Men tend to lose the Y chromosome from their cells as they age. But because the Y bears few genes other than for male determination, it was thought this loss would not affect health.…Continue

Sport Science - your best bet to beat competition when used in a correct and legal way

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 19 Replies

How can you achieve these targets in sport: "Faster, Higher, Stronger"?Very often people in this part of the world wonder why some developed countries do very well in Olympics and other International sporting competitions and get the maximum number…Continue

Is anything in science (physics) ever 100% certain?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Q: Is anything in science (physics) ever 100% certain?Krishna: That depends on which aspect of ‘science’ you are dealing with.Science has two aspects to it.One: The principles with which this universe came into existence (to atheists), or created…Continue

Myth busting : Hot water benefits

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

Will drinking hot water help me lose weight, clear my skin or treat cramps?You may have noticed an unexpected wellness trend gaining traction online. People are claiming a …Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa 15 hours ago

Science academies failing to put women at the top
Women now comprise about 19% of science academy members, up from 12% in 2015, but leadership roles remain largely male-dominated, with only one in five academies chaired by a woman and nearly half lacking women as vice-presidents or co-chairs. Women are 2.5 times more likely than men to report discrimination or harassment, and institutional mechanisms to address misconduct are often viewed as inadequate.

National science organizations may have more women members today than a decade ago, but representation at the highest level has failed to keep pace, according to analysis published on International Day of Women and Girls in Science.

The International Science Council (ISC), InterAcademy Partnership (IAP) and Standing Committee for Gender Equality in Science (SCGES) looked at data from 136 scientific organizations and surveyed nearly 600 scientists to get a picture of gender equality across science academies and unions worldwide.

They found that women made up around 19% of science academy members in 2025–up from 12% in 2015. But only one in five academies was chaired by a woman and almost half had no women as vice-presidents or co-chairs, representing a "very limited increase" in the last decade and no progress in the last five years, according to their report.

Science academies play a role in shaping research agendas and standards across different disciplines and advising policymakers.

On paper, most science organizations promote themselves as open and inclusive, with election procedures based on academic merit. But informal networks persist that determine who is put forward for leadership roles, the report suggests.

Additionally, women are 2.5 times more likely than men to report experiences of discrimination or harassment within scientific organizations and show less confidence in organizational mechanisms to address misconduct, it says.

Towards gender equality in scientific organization: assessment and recommendations. www.interacademies.org/publica … -and-recommendations

Carolina Espinosa Luna et al, Economías de legitimidad abusiva: explicación sociológica de la violencia académica contra mujeres, Estudios Sociológicos de El Colegio de México (2026). DOI: 10.24201/es.2026v44.e2873

Comment by Dr. Krishna Kumari Challa 15 hours ago

How did humans develop sharp vision? Lab-grown retinas show likely answer
Sharp human vision develops in early fetal life through the combined action of retinoic acid, which limits blue cone formation, and thyroid hormones, which convert blue cones into red and green cones in the foveola. This process establishes the unique cone distribution essential for high-acuity vision and may inform future therapies for retinal diseases.

Katarzyna A. Hussey et al, A cell fate specification and transition mechanism for human foveolar cone subtype patterning, Proceedings of the National Academy of Sciences (2026). DOI: 10.1073/pnas.2510799123

Comment by Dr. Krishna Kumari Challa 15 hours ago

Scientists decipher how two bacterial species cooperate to avoid being eaten
Pseudomonas and Paenibacillus bacteria cooperate to evade amoeba predation by modifying the lipopeptide syringafactin. Pseudomonas produces syringafactin, which Paenibacillus activates via DL peptidases, converting it into an amoeba-toxic compound. This mechanism highlights a specific enzymatic cleavage of D/L-configured lipopeptides, aiding future natural product analysis and anti-infective development.

Shuaibing Zhang et al, Microbial DL-Peptidases Enable Predator Defense and Facilitate Structure Elucidation of Complex Natural Products, Journal of the American Chemical Society (2026). DOI: 10.1021/jacs.5c17955

Comment by Dr. Krishna Kumari Challa 15 hours ago

Polluting the environment for all eternity—and still sticking our heads in the sand
Plastic pollution persists in the environment, breaking down into microplastics and releasing PFAS and heavy metals at levels exceeding safety thresholds in small freshwater ecosystems. These contaminants threaten wildlife and human health. Despite global and national targets, current cleanup efforts and funding are insufficient, and long-term, coordinated action is urgently needed.

Hilde Ervik et al, Organic contaminants and toxic elements in marine plastic debris, water and sediments in small freshwater lakes in a Norwegian coastal archipelago, Heliyon (2026). DOI: 10.1016/j.heliyon.2025.e44232

Comment by Dr. Krishna Kumari Challa 15 hours ago

Addressing these challenges, the interdisciplinary team of researchers propose a solution that enables the selective killing of phages without any harmful effect on bacteria. Their latest work, published in Materials & Design, shows an innovative approach based on polymeric nanospheres having a well-defined surface that interacts with bacteriophages.
Bacteriophages possess characteristic surface charges that differ from those of bacterial and eukaryotic cells. The researchers designed polypyrrole nanoparticles (NPs) that interact directly with charges on the phage surface through electrostatic interactions. Because the biological membranes of bacteria and human cells have different surface properties than bacteriophages, they are not affected, and the charged polypyrrole NPs act selectively on phages.

Importantly, the present study demonstrates that selective antiphage activity can be achieved using polymer-based nanoparticles, offering a significantly cheaper and scalable alternative to other nanostructural solutions like gold-based systems.
The proposed nanoparticles are approximately 50 nm in diameter and contain specific chemical groups on their surface, namely negatively charged carboxylic groups, which enhance electrostatic interactions with bacteriophages. The researchers controlled the density of these groups during fabrication by polymerizing mixtures of pyrrole with and without carboxylic modifications.

Importantly, they identified an optimal surface composition required for effective phage inactivation.
The cytotoxicity studies that were performed on fibroblasts demonstrated that the nanoparticles were biocompatible at concentrations effective for phage inactivation. The irreversible inactivation of phages along with minor cytotoxicity shows the potential of the proposed NP in biotechnology, antimicrobial, and medical applications.

Sada Raza et al, Targeted inactivation of bacteriophages by polypyrrole nanoparticles, Materials & Design (2025). DOI: 10.1016/j.matdes.2025.115204

part 2

**

Comment by Dr. Krishna Kumari Challa 16 hours ago

Why phage contamination is hard to kill, and how charged nanoparticles could help

Bacteriophages are viruses that can kill bacteria through highly specific interactions. While this property can be beneficial in selected applications, bacteriophages represent a serious threat to laboratories and industries that rely on bacterial cultures for production. Their selective inactivation remains a major challenge. Recently, researchers demonstrated an innovative solution that enables targeting the surface of bacteriophage through electrostatic interactions as a promising strategy for their inactivation without adversely affecting bacterial strains or eukaryotic cells.
Decades ago, antibiotics were considered wonder drugs capable of curing bacterial infections. Unfortunately, overuse of these drugs led to the development of antibiotic-resistance in many pathogenic bacterial strains, raising global concern. One of the solutions to defeat these pathogens is bacteriophages, also called phages. While phages are explored as therapeutic agents in medicine, their presence is highly undesirable in laboratories and industrial processes that depend on carefully controlled bacterial cultures.
In many industrial sectors, including food fermentation, enzyme, pharmaceuticals, and cosmetics production, specific bacterial strains are essential for efficient and reproducible manufacturing. In these settings, bacteriophages pose a major risk, as they can selectively infect and eliminate production strains, leading to failed batches and significant economic losses. Phages may also appear in agriculture or wastewater treatment environments, where their presence can influence microbial populations, but in controlled bioprocesses their uncontrolled spread is particularly detrimental.
Despite their small size, bacteriophages are highly persistent and can easily spread within laboratory and industrial environments. They may be introduced through contaminated raw materials, inadequately disinfected equipment, surfaces, or even air. Once present, phages can rapidly propagate within bacterial cultures, often remaining undetected until the entire system collapses due to bacterial lysis.
To prevent phage contamination, laboratories and factories rely on strict hygiene protocols involving sterilization and disinfection methods such as UV-C radiation, high temperature and pressure, ozone, and aggressive chemicals including potassium peroxymonosulfate (Virkon), ethanol, bleach, and hydrogen peroxide. These approaches typically aim to damage phage capsid proteins or nucleic acids, thereby inactivating the virus.

However, bacteriophages can aggregate, increasing their resistance to harsh environmental conditions such as heat or chemical exposure. Moreover, phages are often more resilient than bacteria themselves. As a result, disinfection methods strong enough to eliminate phages frequently destroy the bacterial strains required for industrial processes. This lack of selectivity represents a critical limitation of existing anti-phage strategies and drives the search for safer, more effective solutions.
Part 1
Bacteriophage contamination is difficult to eliminate due to phages’ persistence and resistance to standard disinfection, which often harms beneficial bacteria. Charged polypyrrole nanoparticles with 1% carboxyl groups selectively inactivate phages via electrostatic interactions, sparing bacteria and eukaryotic cells, and show low cytotoxicity, offering a scalable, targeted solution for bioprocess protection.

Comment by Dr. Krishna Kumari Challa 16 hours ago

The discovery of a tiny RNA molecule and clues to origin of life

One of the greatest mysteries of our planet is how a soup of lifeless chemicals transformed into the first living cell. There are several competing theories about where this happened, from frozen polar ice to superheated hydrothermal vents. But one thing that most scientists agree on is that life could not begin until a molecule appeared that could spontaneously copy itself.

For decades, the RNA World hypothesis has proposed that RNA was that molecule and that it proliferated before the evolution of DNA and proteins. This RNA had to be able to store genetic information and also build things such as new RNA strands.

However, there is a major problem with this school of thought: the RNA molecules (ribozymes) that we know can copy other RNA molecules are large and complex. That means it is highly unlikely they would have formed spontaneously in the primordial soup.

But a new candidate has emerged that might solve this puzzle. In a study published in the journal Science, researchers report the discovery of a small RNA molecule called QT45.

They found it after searching through a vast library of 12 trillion random RNA sequences. They were looking for any snippets of RNA that could act as a polymerase—a molecular builder. When the team found a few promising candidates, they put them through a molecular version of the survival-of-the-fittest test. They challenged them to build longer and longer chains under increasingly tougher conditions. QT45 emerged as the winner.

The scientists then ran experiments in a slushy, salty mixture of ice crystals and liquid to mimic conditions of early Earth. In this lab setting, QT45, which comprises just 45 nucleotides, proved it could act as a polymerase. It built a complementary RNA strand and then used that as a template to create a brand-new copy.

The study shows that the complex functions needed for RNA replication... can all be performed by an RNA motif of just 45 nucleotides.

According to the study authors, if a molecule this tiny is capable of performing complex tasks like building new strands and copying itself, life-starting molecules are likely to be more common.

Edoardo Gianni et al, A small polymerase ribozyme that can synthesize itself and its complementary strand, Science (2026). DOI: 10.1126/science.adt2760

Comment by Dr. Krishna Kumari Challa 16 hours ago

To test out the three theories, the researchers put together a series of three psychophysical tasks, which include distance estimation, area size matching, and motion curvature judgment, all near or away from the blind spot. The tasks use colored glasses for dichoptic presentation, which allows for stimuli to be shown to one eye at a time. The study also utilizes eye tracking to ensure accurate fixation and to prevent unintentional stimulation of the blind spot.
The research team also conducted analysis with simulated data of IIT, NREP and AI predictions for their distance estimation task, area size task and motion curvature task. The simulated data showed that IIT predicts spatial warping near the blind spot, while AI and NREP predict little or no distortion, with possible small decreases in precision.

As with most studies, there are potential limitations in interpreting the data when the actual experiments take place. For example, the theories in question predict the direction but not the magnitude of effects, making interpretation challenging.

The team also notes that unexpected results, such as an object appearing larger when it is predicted to appear smaller, may not be easily explained by any theory. Still, studies using the protocol have the potential to address some fundamental questions about how we perceive a seamless world with gaps in sensory input and may even advance the understanding of consciousness.

Clement Abbatecola et al, Protocol for investigating the warping of spatial experience across the blind spot to contrast predictions of the Integrated Information Theory and Predictive Processing accounts of consciousness, PLOS One (2026). DOI: 10.1371/journal.pone.0340593

Part 2

**

Comment by Dr. Krishna Kumari Challa 16 hours ago

Why you hardly notice your blind spot: New tests pit three theories of consciousness

Although humans' visual perception of the world appears complete, our eyes contain a visual blind spot where the optic nerve connects to the retina. Scientists are still uncertain whether the brain fully compensates for the blind spot or if it causes perceptual distortions in spatial experience. A new study protocol, published in PLOS One, seeks to compare different theoretical predictions on how we perceive space from three leading theories of consciousness using carefully controlled experiments.

Predictions from three theories of consciousness

The new protocol focuses on three contrasting theories of consciousness: Integrated Information Theory (IIT), Predictive Processing Active Inference (AI), and Predictive Processing Neurorepresentationalism (NREP). Each of the theories have different predictions about the effects that the blind spot's structural features have on the conscious perception of space, compared to non-blind spot regions.

IIT argues that the quality of spatial consciousness is determined by the composition of a cause-effect structure, and that the perception of space involving the blind spot is altered. On the other hand, AI and NREP argue that perception relies on internal models that reduce prediction errors and that these models adapt to accommodate for the structural deviations resulting from the blind spot. Essentially, this means that perceptual distortions should either appear small or nonexistent in both theories. However, AI and NREP differ in some ways.

"Specifically, NREP posits that lesions of portions of the visual field can have an effect on spatial estimates, but will be largely compensated for by the sensory evidence available from intact portions of the visual field.

According to AI, the quality of spatial experience is determined by the cause-effect structure under a generative model apt for active vision. This model of projective geometry is not the geometry of anatomical projections. Thus, AI proposes that perceptual judgments should not be altered when involving the blind spot, other than possible changes in perceptual uncertainty, due to differences in sensory sampling," the protocol authors explain.

Part 1

Comment by Dr. Krishna Kumari Challa 16 hours ago

Organic molecule stores solar energy for years, then releases it as heat on demand

When the sun goes down, solar panels stop working. This is the fundamental hurdle of renewable energy: how to save the sun's power for a rainy day—or a cold night. Chemists have developed a solution that doesn't require bulky batteries or electrical grids. In a paper published in the journal Science, they detail a new material that captures sunlight, stores it within chemical bonds and releases it as heat on demand.

The material, a modified organic molecule called pyrimidone, is the latest advancement in molecular solar thermal (MOST) energy storage.

To create this molecule, the team looked to a surprising source: DNA. The pyrimidone structure is similar to a component found in DNA that, when exposed to UV light, can undergo reversible structural changes.

By engineering a synthetic version of this structure, the team created a molecule that stores and releases energy reversibly.

Traditional solar panels convert light into electricity; however, most systems convert light into chemical energy. The molecule acts like a mechanical spring: when hit with sunlight, it twists into a strained, high-energy shape. It stays locked in that shape until a trigger—such as a small amount of heat or a catalyst—snaps it back to its relaxed state, releasing the stored energy as heat.

The team's new molecule is a heavy hitter. It boasts an energy density of more than 1.6 megajoules per kilogram. That is roughly double the energy density of a standard lithium-ion battery—which comes in at around 0.9 MJ/kg—and significantly higher than previous generations of optical switches.

Han P. Q. Nguyen et al, Molecular solar thermal energy storage in Dewar pyrimidone beyond 1.6 MJ/kg, Science (2026). DOI: 10.1126/science.aec6413

 

Members (22)

 
 
 

© 2026   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service