Science, Art, Litt, Science based Art & Science Communication


Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 12 hours ago


     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

There are about 1052 articles posted here in this group. Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28



Part 48 part49Critical thinking -part 50 , part -51part-52part-53


part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...


BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis


o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 


b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here:

( Please go through the comments section below to find reports/research results relating to science reported on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID:

Discussion Forum

Evolution in progress: Defeating killer bacteria by evolving to co-exist with it

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 12 hours ago. 1 Reply

The more we learn about the biological world, the more complex it becomes. Nowhere is this more apparent than in recent discoveries about the ways in which microorganisms influence their hosts.The…Continue

Humans need to see themselves as part of nature to protect it

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Humanity needs to fundamentally change its relationship with nature in order to protect wildlife and enhance the environment.That is the verdict from a milestone report published this week by the…Continue

Cancer vaccines -2

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply

Q: What is Cervavac? Is it really useful?Krishna: Cervavac is a preventive vaccine. This is actually a vaccine aginst human papillomavirus (HPV) that causes cancer.In September 2022, the Serum…Continue

Mitochondrial transplantation improves  recovery from cardiac arrest (in rats)

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply

When a heart stops beating, blood stops flowing and delivering oxygen to the brain (hypoxia) and other vital organs (ischemia). There is a small window (about 4 minutes) before the lack of blood flow…Continue

Comment Wall


You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa 12 hours ago

Using bacteria to convert CO2 in the air into a polyester

A team of chemical and biomolecular engineers at Korea Advanced Institute of Science and Technology has developed a scalable way to use bacteria to convert CO2 in the air into a polyester. In their paper, published in Proceedings of the National Academy of Sciences, the group describes their technique and outline its performance when tested over a several-hour period.


How scientists cut their carbon footprints

As the effects of climate change grow, scientists from fields spanning astronomy to biology are trying to decarbonize their research. They say that the time for carbon-footprint assessments is over — we must take action, and that needs institutional support. “The situation is not that different from the one you can experience as a citizen,” says Pierrick Martin, an astrophysicist at an institute that is trying to reduce the heavy toll of its observatory. “There are things you can do yourself, at your level, in your local environment, that are worth something. But this has limits, and you can’t escape from political decisions at some point.”

Comment by Dr. Krishna Kumari Challa 12 hours ago

Researchers identify specific regions of the brain damaged by high blood pressure, involved in mental decline, dementia

For the first time, researchers have identified specific regions of the brain that are damaged by high blood pressure and may contribute to a decline in mental processes and the development of dementia.

High blood pressure is known to be involved in causing dementia and damage to brain function. The study, which is published in the European Heart Journal recently, shows how this happens. It gathered information from a combination of magnetic resonance imaging (MRI) of brains, genetic analyses and observational data from thousands of patients to look at the effect of high blood pressure on cognitive function.

The researchers then checked their findings in a separate, large group of patients in Italy who had high blood pressure, and found that the parts of the brain the researchers had identified were indeed affected. Further research also found that genes that cause high BP and other factors are not involved in these changes.

The researchers found changes to nine parts of the brain were related to higher blood pressure and worse cognitive function. These included the putamen, which is a round structure in the base of the front of the brain, responsible for regulating movement and influencing various types of learning. Other areas affected were the anterior thalamic radiation, anterior corona radiata and anterior limb of the internal capsule, which are regions of white matter that connect and enable signaling between different parts of the brain. The anterior thalamic radiation is involved in executive functions, such as the planning of simple and complex daily tasks, while the other two regions are involved in decision-making and the management of emotions.

The changes to these areas included decreases in brain volume and the amount of surface area on the brain cortex, changes to connections between different parts of the brain, and changes in measures of brain activity.

Tomasz J Guzik et al, Genetic analyses identify brain structures related to cognitive impairment associated with elevated blood pressure, European Heart Journal (2023). DOI: 10.1093/eurheartj/ehad101

Ernesto L. Schiffrin et al, Hypertension, brain imaging phenotypes and cognitive impairment: lessons from Mendelian randomisation, European Heart Journal (2023). DOI: 10.1093/eurheartj/ehad187

Comment by Dr. Krishna Kumari Challa 16 hours ago

Are Air Fryers Healthy For Us?

Comment by Dr. Krishna Kumari Challa yesterday

Methane changes this equation. By holding on to energy from the sun, methane is introducing heat the atmosphere no longer needs to get from precipitation.

Additionally, methane shortwave absorption decreases the amount of solar radiation reaching Earth's surface. This in turn reduces the amount of water that evaporates. Generally, precipitation and evaporation are equal, so a decrease in evaporation leads to a decrease in precipitation.

This has implications for understanding in more detail how methane and perhaps other greenhouses gases can impact the climate system. Shortwave absorption softens the overall warming and rain-increasing effects but does not eradicate them at all.

Robert J. Allen et al, Surface warming and wetting due to methane's long-wave radiative effects muted by short-wave absorption, Nature Geoscience (2023). DOI: 10.1038/s41561-023-01144-z

Part 2


Comment by Dr. Krishna Kumari Challa yesterday

Methane cools even as it heats

Most climate models do not yet account for a new  discovery: methane traps a great deal of heat in Earth's atmosphere, but also creates cooling clouds that offset 30% of the heat!

Greenhouse gases like methane create a kind of blanket in the atmosphere, trapping heat from Earth's surface, called longwave energy, and preventing it from radiating out into space. This makes the planet hotter.

A blanket doesn't create heat, unless it's electric. You feel warm because the blanket inhibits your body's ability to send its heat into the air. This is the same concept.

In addition to absorbing longwave energy, it turns out methane also absorbs incoming energy from the sun, known as shortwave energy. This should warm the planet. But counterintuitively, the shortwave absorption encourages changes in clouds that have a slight cooling effect.

This effect is detailed in the journal Nature Geoscience, alongside a second finding that the researchers did not fully expect. Though methane generally increases the amount of precipitation, accounting for the absorption of shortwave energy suppresses that increase by 60%.

Both types of energy—longwave (from Earth) and shortwave (from sun)—escape from the atmosphere more than they are absorbed into it. The atmosphere needs compensation for the escaped energy, which it gets from heat created as water vapour condenses into rain, snow, sleet, or hail.

Essentially, precipitation acts as a heat source, making sure the atmosphere maintains a balance of energy.

Part 1

Comment by Dr. Krishna Kumari Challa yesterday

The researchers found that in countries where antibiotics are taken more regularly, their populations also have higher numbers of resistance genes in their gut microbiome.

The reason this collateral damage is such a major problem is that microbes are constantly sharing genes with each other. Known as horizontal gene transfer, this process helps AMR genes to spread back and forth between species. Our bodies are continually importing and exporting microbes and pathogen strains. These strains are themselves passing genes back and forth, which means the challenge of AMR has to be tackled at both the micro and macro level. Given our complex relationship with microbes, we need to do more research to understand how we maximize the benefits and minimize the risks when it comes to guiding treatment decisions and developing new medicines.

We've known for some years that antimicrobial resistance genes can spread incredibly fast between gut bacteria. This study is so important because it can, for the first time, quantify the impact national antibiotic usage has on our commensal bacteria, as well as giving us insights into the common types of resistance we can expect to evolve.

Kihyun Lee et al, Population-level impacts of antibiotic usage on the human gut microbiome, Nature Communications (2023). DOI: 10.1038/s41467-023-36633-7

Part 2

Comment by Dr. Krishna Kumari Challa yesterday

Human body is a breeding ground for antimicrobial resistance genes, shows new study

The community of microbes living in and on our bodies may be acting as a reservoir for antibiotic resistance, according to new research.

The use of antibiotics leads to "collateral damage" to the microbiome, ramping up the number of resistance genes being passed back and forth between strains in the microbiome. The findings also suggest these genes spread so easily through a population, that regardless of your own health and habits, the number of resistance genes in your gut is heavily influenced by national trends in antibiotic consumption.

The rise of antimicrobial resistance (AMR) among human pathogens is widely seen as one of the most serious threats to global health in the coming decades. AMR is already believed to be contributing to tens of thousands of deaths in the world each year.

Tracking the emergence and spread of genes that help these pathogens to shrug off antibiotics has generally been limited to samples taken from infected individuals. The majority of microbes living in the human body, however, are not pathogenic.

The human microbiome is a complex and dynamic community of millions of species of microbes, primarily living in the gut and coexisting with us. Microbiomes play an important role in health and disease, with the gut microbiome known to help with the digestion of food and the development of our immune system.

Even a healthy individual who hasn't taken antibiotics recently is constantly bombarded by microbes from people or even pets they interact with, which leads to resistance genes becoming embedded in their own microbiota. If they exist in a population with a heavy burden of antibiotic consumption, it leads to more resistance genes in their microbiome.

To better understand the impact of antimicrobials on the gut microbiome, researchers analyzed over 3,000 gut microbiome samples, collected from healthy individuals across 14 countries. They then compared the resistance genes identified in samples to those found in large genome collections in order to understand the movement of AMR genes between microbe and pathogen species.

They carefully catalogued and recorded the number of antimicrobial resistance genes found in the samples by comparing data to the Comprehensive Antibiotic Resistance Database, a public health resource where resistance genes are documented.

The team identified a median of 16 AMR genes per stool sample analyzed. They also found that the median number of genes varied across the 14 countries for which they had data. For example, they saw a five-fold variation in median resistance levels between the lowest in the Netherlands and the highest in Spain.

Using World Health Organization and ResistanceMap data, the team were able to show a strong correlation between the frequency of resistance genes present in a country and national antibiotic consumption levels.

Part 1

Comment by Dr. Krishna Kumari Challa yesterday

The reaction produces different isomers—molecules that all have the same mass, but slightly different structures. With standard mass spectrometry, all these variants produce the same signal. But the outcome is different when using photoelectron photoion coincidence spectroscopy, the method adopted by the team. With this technique, the structure of the measurement curve allows conclusions to be drawn about each individual isomer.

The universe contains a wild jungle of molecules and —not all of them can be distinctly classified in the signals from telescopes.

Scientists already know from models that both corannulene and vinylacetylene exist in the universe. Now it has been possible to confirm that these molecules actually form the building blocks to fullerene.

 The researchers want to conduct more experiments in order to understand how the classic buckyballs form in the universe, along with the football-shaped fullerene molecules with 60 carbon atoms and the minute nanotubes with even more atoms.

Lotefa B. Tuli et al, Gas phase synthesis of the C40 nano bowl C40H10Nature Communications (2023). DOI: 10.1038/s41467-023-37058-y

Part 2


Comment by Dr. Krishna Kumari Challa yesterday

How football-shaped molecules occur in the universe

For a long time it has been suspected that fullerene and its derivatives could form naturally in the universe. These are large carbon molecules shaped like a football, salad bowl or nanotube. An international team of researchers using the Swiss SLS synchrotron light source at PSI has shown how this reaction works. The results have just been published in the journal Nature Communications.

The planets and  human beings and all the life forms  are actually made up of dust from burnt-out supernovae and carbon compounds billions of years old. The universe is a giant reactor and understanding these reactions means understanding the origins and development of the universe—and where life - especially humans come from.

In the past, the formation of fullerenes and their derivatives in the universe has been a puzzle. These carbon molecules, in the shape of a football, bowl or small tube, were first created in the laboratory in the 1980s. In 2010 the infrared space telescope Spitzer discovered the C60 molecules with the characteristic shape of a soccer ball, known as buckyballs, in the planetary nebula Tc 1. They are therefore the biggest molecules to have been discovered to date known to exist in the universe beyond our solar system.

But how do they actually form there? A team of researchers has now completed an important reaction step in the formation of the molecules, with active support from PSI and the vacuum ultraviolet (VUV) beamline of the synchrotron light source Swiss SLS.

Scientists working on the VUV beamline at PSI, has built a mini reactor for observing the formation of fullerene in real time. A corannulene radical (C20H9) is created in a reactor at a temperature of 1,000 degrees Celsius. This molecule looks like a salad bowl, as if it had been dissected from a C60 buckyball. This radical is highly reactive. It reacts with vinyl acetylene (C4H4), which deposits a layer of carbon onto the rim of the bowl.

By repeating this process many times, the molecule would grow into the end cap of a nanotube. We have managed to demonstrate this phenomenon in computer simulations.

Part 1

Comment by Dr. Krishna Kumari Challa on Monday

From mutation to arrhythmia: Desmosomal protein breakdown as an underlying mechanism of cardiac disease

Mutations in genes that form the desmosome are the most common cause of the cardiac disease arrhythmogenic cardiomyopathy (ACM), which affects one in 2,000 to 5,000 people worldwide. Researchers  now discovered how a mutation in the desmosomal gene plakophilin-2 leads to ACM. They found that the structural and functional changes in ACM hearts caused by a plakophilin-2 mutation are the result of increased desmosomal protein degradation. The findings of this study, published in Science Translational Medicine on March 22, 2023, further our understanding of ACM and could contribute to the development of new therapies for this disease.

ACM is a progressive and inheritable cardiac disease for which currently no treatments exist to halt its progression. Although patients initially do not experience any symptoms, they are at a higher risk of arrhythmias and resulting sudden cardiac arrest. As the disease progresses, patches of fibrotic and fat tissue form in the heart which can lead to heart failure. At this stage, patients require a heart transplantation as treatment.

More than 50% of all ACM cases are caused by a mutation in one of the desmosomal genes, which together form complex protein structures known as desmosomes. Desmosomes form "bridges" between individual heart muscle cells, allowing the cells to contract in a coordinated manner. Most of the desmosomal mutations that cause ACM occur in a gene called plakophilin-2.

The researchers used the genetic tool  CRISPR/Cas9 to introduce the human plakophilin-2 mutation in mice to mimic ACM. This allowed them to study progression of the disease in more detail. They observed that old ACM mice carrying this mutation had lower levels of desmosomal proteins and heart relaxation issues, similar to ACM patients.

Strikingly, the researchers discovered that the mutation lowered levels of desmosomal proteins even in young, healthy mice of which the heart contracted normally. From this they concluded that a loss of desmosomal proteins could underlie the onset of ACM caused by a plakophilin-2 mutation.

The researchers then moved on to explain the loss of desmosomal proteins. For this they studied both RNA and protein levels in their ACM mice. "The levels of desmosomal proteins were lower in our ACM mice compared to healthy control mice. However, the RNA levels of these genes were unchanged. They discovered that these surprising findings are the result of increased protein degradation in ACM hearts.

When the researchers treated their ACM mice with a drug that prevents protein degradation, the levels of desmosomal proteins were restored. More importantly, the restored levels of desmosomal proteins improved calcium handling of heart muscle cells, which is vital for their normal function.

The results of this study raise new insights into ACM development and indicate that protein degradation could be an interesting target for future therapies.

 Desmosomal protein degradation as an underlying cause of arrhythmogenic cardiomyopathy. Science Translational Medicine, 2023; 15 (688) DOI: 10.1126/scitranslmed.add4248


Members (22)




© 2023   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service