Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Load Previous Comments
  • Dr. Krishna Kumari Challa

    Traffic noise linked to higher cholesterol and lipid levels in blood
    Long-term exposure to nighttime road traffic noise above 50–55 dB is associated with higher blood levels of total cholesterol, LDL cholesterol, and other lipid-related metabolites, which are established risk factors for cardiometabolic diseases. These metabolic changes show a clear exposure-response pattern, suggesting that reducing nighttime noise could benefit public health.

    Yiyan He et al, Metabolic profiles of nighttime road traffic noise exposure: A multi-cohort study in the European LongITools project, Environmental Research (2026). DOI: 10.1016/j.envres.2026.123887

  • Dr. Krishna Kumari Challa

    AI is distorting online research, from polls to public policy
    AI systems can now convincingly simulate human responses in online surveys and polls, undermining the reliability of survey-based research and public policy data. Traditional safeguards like CAPTCHAs and attention checks are increasingly ineffective. New strategies, including behavioural analysis and tasks exploiting human error patterns, are needed to maintain data integrity as AI advances.

    Folco Panizza et al, How to deal with the survey-taking AI agents that threaten to upend social science, Nature (2026). DOI: 10.1038/d41586-026-00386-2

  • Dr. Krishna Kumari Challa

    Fungi flip mattresses into useful materials
    Material from discarded mattresses can be upcycled into fire-resistant insulation with the help of a fungus. Researchers mixed polyurethane foam from mattresses into a nutrient-rich liquid and added spores of the fungus Penicillium chrysogenum. The fungus produced deposits of calcium carbonate as it grew, which meshed with the foam to form a lightweight material that could withstand temperatures up to around 1000 °C. Through natural biological processes, we can give this waste a second life.

    https://www.nature.com/articles/s41598-025-30954-x?utm_source=Live+...