Science, Art, Litt, Science based Art & Science Communication


Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 9 hours ago


     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28



Part 48 part49Critical thinking -part 50 , part -51part-52part-53


part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...


BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis


o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 


b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here:

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID:

Discussion Forum

You cannot prove all the scientific theories wrong!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Q: What are the potential consequences if scientific theories were proven to be incorrect and our perception of reality was solely based on our own minds?Krishna: All of the scientific theories? Not…Continue

The consequences of global light pollution

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Our ancestors could look up and see the Milky Way—our galaxy—as a large band of white light stretching across the sky. Because of light pollution, that's no longer the case. Most of the present…Continue

Chirality: Magnetic effects at the origin of life?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Magnetic effects at the origin of life? It's the spin that makes the differenceBiomolecules such as amino acids and sugars occur in two mirror-image forms—in all living organisms, however, only one…Continue

Single antivenom for several lethal snake toxins developed by researchers

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Research scientists have developed an antibody that can block the effects of lethal toxins in the venoms of a wide variety of snakes found throughout Africa, Asia and Australia.The antibody, which…Continue

Comment Wall


You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on February 15, 2024 at 10:05am

Altermagnetism: A new type of magnetism, with broad implications for technology and research

There is now a new addition to the magnetic family: thanks to experiments at the Swiss Light Source SLS, researchers have proved the existence of altermagnetism. The experimental discovery of this new branch of magnetism is reported in Nature and signifies new fundamental physics, with major implications for spintronics.

Magnetism is a lot more than just things that stick to the fridge. This understanding came with the discovery of antiferromagnets nearly a century ago. Since then, the family of magnetic materials has been divided into two fundamental phases: the ferromagnetic branch known for several millennia and the antiferromagnetic branch.
The experimental proof of a third branch of magnetism, termed altermagnetism, was made at the Swiss Light Source SLS, by an international collaboration led by the Czech Academy of Sciences together with Paul Scherrer Institute PSI.

The fundamental magnetic phases are defined by the specific spontaneous arrangements of magnetic moments—or electron spins—and of atoms that carry the moments in crystals.

Ferromagnets are the type of magnets that stick to the fridge: here spins point in the same direction, giving macroscopic magnetism. In antiferromagnetic materials, spins point in alternating directions, with the result that the materials possess no macroscopic net magnetization—and thus don't stick to the fridge. Although other types of magnetism, such as diamagnetism and paramagnetism have been categorized, these describe specific responses to externally applied magnetic fields rather than spontaneous magnetic orderings in materials.

Altermagnets have a special combination of the arrangement of spins and crystal symmetries. The spins alternate, as in antiferromagnets, resulting in no net magnetization. Yet, rather than simply canceling out, the symmetries give an electronic band structure with strong spin polarization that flips in direction as you pass through the material's energy bands—hence the name altermagnets. This results in highly useful properties more resemblant to ferromagnets, as well as some completely new properties.

Part 1

Comment by Dr. Krishna Kumari Challa on February 14, 2024 at 10:05am

A car powered by ammonia?

Ammonia is combustible, and holds promise as a relatively low-effort way to decarbonize the internal combustion engine – but the devil’s in the details.

Comment by Dr. Krishna Kumari Challa on February 14, 2024 at 7:17am

Vibrio natriegens: Low-cost microbe could speed biological discovery

 Researchers have created a new version of a microbe to compete economically with E. coli—a bacteria commonly used as a research tool due to its ability to synthesize proteins—to conduct low-cost and scalable synthetic biological experiments.

As an inexpensive multiplier—much like having a photocopier in a test tube—the bacteria Vibrio natriegens could help labs test protein variants for creation of pharmaceuticals, synthetic fuels and sustainable compounds that battle weeds or pests. The microbe can work effectively without costly incubators, shakers or deep freezers and can be engineered within hours.

 Efficient Natural Plasmid Transformation of Vibrio natriegens Enables Zero-capital Molecular Biology, PNAS Nexus (2024). DOI: 10.1093/pnasnexus/pgad444

Comment by Dr. Krishna Kumari Challa on February 13, 2024 at 10:33am

Air pollution turns moths off flowers
Air pollution makes the scent of a night-blooming plant less enticing to pollinating moths. Researchers discovered that nitrate radicals severely degrade key odour components that attract pollinating insects to the pale evening primrose (Oenothera pallida). Nitrate radicals, which can come from various sources including vehicle emissions, are particularly abundant when there’s no sunlight to break them down. Artificial flowers spiked with the pollution-degraded scent received 70% fewer visits from wild hawkmoths than fake flowers with intact odour. Because hawkmoths are some of the primrose’s main pollinators this could reduce the plant’s fruit production by almost 30%.

Comment by Dr. Krishna Kumari Challa on February 13, 2024 at 9:56am

Researchers develop eco-friendly 'magnet' to battle microplastics

Plastic pollution is a pressing environmental issue, and  researchers are leading the charge with an innovative solution.

Their research, published in Scientific Reports, centers on an intriguing solution: using natural deep eutectic solvents (NADES) to capture and remove these miniature particles from water.

Plastics don't break down easily, leading to massive piles of waste. Over time, these plastics break into smaller fragments. The smallest, nano-plastics, are so tiny they can't be seen without a microscope. Their size makes them a significant hazard, as they can be ingested by marine life and enter the human food chain.

These minute particles, often invisible to the naked eye, are the remnants of larger plastic pieces broken down by sunlight and physical stress. Their size makes them notoriously difficult to remove using conventional methods like centrifugation or filtration, which are either inefficient or too costly.

Now think of NADES as a kind of 'magnet' that specifically attracts and holds onto these small plastic pieces. Basically, the NADES mix with the water and 'stick' to the plastics, pulling them out of the water.

The molecules in the NADES can form bonds with the molecules in the plastics, a bit like how Velcro works: one side sticks to the other. This property makes NADES particularly good at grabbing onto and holding these plastic particles. NADES are also unique because they are effective and environmentally friendly. They're made from natural materials, meaning they don't add more pollutants to the environment while cleaning up the existing ones.

Derived from natural sources like plants and coconuts, these solvents transform from solid to liquid when mixed, creating an effective medium to extract these tiny plastic particles from water.

The researchers focused on polyethylene terephthalate (PET) like that found in plastic bottles, polystyrene (PS) used for materials such as packaging peanuts and polylactic acid (PLA) used for plastic films and food containers. Using computer simulations, they could see how these interactions work on a minute scale.

Their experiments revealed that certain NADES are particularly good at extracting these types of plastic from water. This discovery was crucial, offering a targeted approach to removing plastics.

Jameson R. Hunter et al, Green solvent mediated extraction of micro- and nano-plastic particles from water, Scientific Reports (2023). DOI: 10.1038/s41598-023-37490-6

Comment by Dr. Krishna Kumari Challa on February 13, 2024 at 8:31am

Researchers predict the young universe had two phases. During the first phase, high-speed outflows from black holes accelerated star formation, and then, in a second phase, the outflows slowed down. A few hundred million years after the big bang, gas clouds collapsed because of supermassive black hole magnetic storms, and new stars were born at a rate far exceeding that observed billions of years later in normal galaxies. The creation of stars slowed down because these powerful outflows transitioned into a state of energy conservation reducing the gas available to form stars in galaxies.

The future has more secrets to reveal!

Joseph Silk et al, Which Came First: Supermassive Black Holes or Galaxies? Insights from JWST, The Astrophysical Journal Letters (2024). DOI: 10.3847/2041-8213/ad1bf0

Part 2

Comment by Dr. Krishna Kumari Challa on February 13, 2024 at 8:30am

New light on Black holes

Black holes not only existed at the dawn of time, they birthed new stars and supercharged galaxy formation, a new analysis of James Webb Space Telescope data suggests.

The insights upend theories of how black holes shape the cosmos, challenging classical understanding that they formed after the first stars and galaxies emerged. Instead, black holes might have dramatically accelerated the birth of new stars during the first 50 million years of the universe, a fleeting period within its 13.8 billion-year history.

We know these monster black holes exist at the center of galaxies near our Milky Way, but the big surprise now is that they were present at the beginning of the universe as well and were almost like building blocks or seeds for early galaxies.

They really boosted everything, like gigantic amplifiers of star formation, which is a whole turnaround of what we thought possible before—so much so that this could completely shake up our understanding of how galaxies form.

Conventional wisdom holds that black holes formed after the collapse of supermassive stars and that galaxies formed after the first stars lit up the dark early universe. But the analysis by researchers suggests that black holes and galaxies coexisted and influenced each other's fate during the first 100 million years.

Researchers now think  that black hole outflows crushed gas clouds, turning them into stars and greatly accelerating the rate of star formation. Otherwise, it's very hard to understand where these bright galaxies came from because they're typically smaller in the early universe. Why on earth should they be making stars so rapidly?

Black holes are regions in space where gravity is so strong that nothing can escape their pull, not even light. Because of this force, they generate powerful magnetic fields that make violent storms, ejecting turbulent plasma and ultimately acting like enormous particle accelerators.

We can't quite see these violent winds or jets far, far away, but we know they must be present because we see many black holes early on in the universe. These enormous winds coming from the black holes crush nearby gas clouds and turn them into stars. That's the missing link that explains why these first galaxies are so much brighter than we expected.

Part 1

The work is newly published in the Astrophysical Journal Letters.

Comment by Dr. Krishna Kumari Challa on February 13, 2024 at 7:08am

Global deforestation leads to more mercury pollution, finds study

About 10% of human-made mercury emissions into the atmosphere each year are the result of global deforestation, according to a new MIT study.

The world's vegetation, from the Amazon rainforest to the savannahs of sub-Saharan Africa, acts as a sink that removes the toxic pollutant from the air. However, if the current rate of deforestation remains unchanged or accelerates, the researchers estimate that net mercury emissions will keep increasing.

The researchers' model shows that the Amazon rainforest plays a particularly important role as a mercury sink, contributing about 30% of the global land sink. Curbing Amazon deforestation could thus have a substantial impact on reducing mercury pollution.

The team also estimates that global reforestation efforts could increase annual mercury uptake by about 5%. While this is significant, the researchers emphasize that reforestation alone should not be a substitute for worldwide pollution control efforts.

Aryeh Feinberg et al, Deforestation as an Anthropogenic Driver of Mercury Pollution, Environmental Science & Technology (2024). DOI: 10.1021/acs.est.3c07851

Comment by Dr. Krishna Kumari Challa on February 13, 2024 at 6:59am

Nearly half of the world's migratory species are in decline, UN report says

Nearly half of the world's migratory species are in decline, according to a new United Nations report released recently. 

Many songbirds, sea turtles, whales, sharks and other migratory animals move to different environments with changing seasons and are imperiled by habitat loss, illegal hunting and fishing, pollution and climate change.

About 44% of migratory species worldwide are declining in population, the report found. More than a fifth of the nearly 1,200 species monitored by the U.N. are threatened with extinction. These are species that move around the globe. They move to feed and breed and also need stopover sites along the way.

Habitat loss or other threats at any point in their journey can lead to dwindling populations. 

Migration is essential for some species. If you cut the migration, you're going to kill the species.

The report relied on existing data, including information from the International Union for Conservation of Nature's Red List, which tracks whether a species is endangered.

Participants of the U.N. meeting plan to evaluate proposals for conservation measures and also whether to formally list several new species of concern.

One country alone cannot save any of these species. In 2022, governments pledged to protect 30% of the planet's land and water resources for conservation at the U.N. Biodiversity Conference.

But these results don't reflect that!

Source: AP and other news agencies.

Comment by Dr. Krishna Kumari Challa on February 12, 2024 at 10:29am

New research finds that young planets are flattened structures rather than spherical

Astrophysicists  have found that planets have flattened shapes like smarties just after they form rather than being spherical as previously thought.

The research, accepted for publication in Astronomy & Astrophysics Letters, shows that protoplanets, which are very young planets recently formed around stars, are flattened structures called oblate spheroids. The paper can currently be accessed on the arXiv preprint server.

The researchers used computer simulations to model the formation of planets according to the theory of disk-instability, which suggests that protoplanets form in short timescales from the breaking up of large rotating disks of dense gas orbiting around young stars.

Taking this approach, the team determined planet properties, compared them with observations and examined the formation mechanism of gas giant planets. They focused on investigating the shapes of young planets and on how these planets may grow to become large gas giant planets, even larger than Jupiter. They also examined the properties of planets forming in a variety of physical conditions, such as ambient temperature and gas density.

Observational confirmation of the flattened shape of young planets may answer the critical question about how planets form, pointing towards the currently less-favored disk-instability model rather than the standard planet formation theory of core accretion.

The researchers also discovered that new planets grow as material falls onto them, predominately from their poles rather than their equators.

These findings have important implications for observations of young planets as they suggest that the way planets appear through a telescope depends on the viewing angle. Such observations of young planets are important in order to understand the planet formation mechanism.

The researchers are following up this discovery with improved computational models to examine how the shape of these planets is affected by the environment in which they form, and to determine their chemical composition to compare with future observations from the James Webb Space Telescope (JWST). Observations of young planets have become possible in the last few years with observing facilities such as the Atacama Large Millimeter Array (ALMA) and the Very Large Telescope (VLT).

 Adam Fenton et al, The 3D structure of disc-instability protoplanets, arXiv (2024). DOI: 10.48550/arxiv.2402.01432


Members (22)


© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service