SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 14 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Some questions people asked on science and my replies to them - 50

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 6 Replies

                                                               Interactive science series                       CRITICAL THINKING - an important aspect of becoming a true scientistQ: You emphasize on…Continue

Why women live longer than men

Started by Dr. Krishna Kumari Challa Oct 2. 0 Replies

Tracing the evolutionary roots of why women live longer than menAround the world, women on average live longer than men. This striking pattern holds true across nearly all countries and historical…Continue

Your Biological Age Can Be Different From Your Actual (Chronological)Age!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 26. 17 Replies

Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps.  "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue

Microbiologists develop bespoke phage therapy to combat antimicrobial resistance

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 25. 1 Reply

Image credit: News-Medical.netIn a major advance for infectious disease…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa 14 hours ago

Novel blood test for chronic fatigue achieves 96% accuracy

Scientists  have developed a high accuracy blood test to diagnose chronic fatigue syndrome, also known as myalgic encephalomyelitis (ME/CFS).

The debilitating long-term illness affects millions worldwide but is poorly understood and has long lacked reliable diagnostic tools.

With 96% accuracy, the new test offers new hope for those living with the condition—which is often misunderstood and misdiagnosed. It is hoped that the breakthrough could pave the way for a similar blood test to diagnose long COVID.

Chronic fatigue syndrome is not a genetic disease you're born with. That's why using EpiSwitch 'epigenetic' markers—which can change during a person's life, unlike a fixed genetic code—was key to reaching this high level of accuracy.

The team discovered a unique pattern that appears consistently in people with ME/CFS that is not seen in healthy people.

The researchers also found signs of immune system and inflammation pathways involved in the disease, which may help guide future treatments and identify patients more likely to respond to specific therapies.

'Development and validation of blood-based diagnostic biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) using EpiSwitch® 3-dimensional genomic regulatory immuno-genetic profiling, Journal of Translational Medicine (2025). translational-medicine.biomedc … 6/s12967-025-07203-w

Comment by Dr. Krishna Kumari Challa 14 hours ago

New type of diabetes discovered in babies

Advanced DNA sequencing technologies and a new model of stem cell research have enabled an international team to discover a new type of diabetes in babies.

The researchers established that mutations in the TMEM167A gene are responsible for a rare form of neonatal diabetes.

Some babies develop diabetes before the age of six months. In over 85% of cases, this is due to a genetic mutation in their DNA. Research  found that in six children with additional neurological disorders such as epilepsy and microcephaly identified alterations in a single gene: TMEM167A.

To understand its role, the researchers  used stem cells differentiated into pancreatic beta cells and gene-editing techniques (CRISPR). They found that when the TMEM167A gene is altered, insulin-producing cells can no longer fulfill their role. They then activate stress mechanisms that lead to their death.

This discovery shows that the TMEM167A gene is essential for the proper functioning of insulin-producing beta cells, but also for neurons, whereas it seems dispensable for other cell types. These results contribute to a better understanding of the crucial steps involved in insulin production and could shed light on research into other forms of diabetes, a disease which today affects almost 589 million people worldwide.

Enrico Virgilio et al, Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome, Journal of Clinical Investigation (2025). DOI: 10.1172/jci195756

Comment by Dr. Krishna Kumari Challa 14 hours ago

Three scientists win Nobel Prize in chemistry for the development of metal-organic frameworks

Three scientists won the Nobel Prize in chemistry this week for their development of new molecular structures that can trap vast quantities of gas inside, laying the groundwork to potentially suck greenhouse gases out of the atmosphere or harvest moisture from desert environments.

Heiner Linke, chairperson of the committee that made the award, compared the structures called metal-organic frameworks to the seemingly bottomless magical handbag carried by Hermione Granger in the "Harry Potter" series. Another example might be Mary Poppins' enchanted carpet bag. These containers look small from the outside but are able to hold surprisingly large quantities within.

The committee said Susumu Kitagawa, Richard Robson and Omar M. Yaghi were honored for "groundbreaking discoveries" that "may contribute to solving some of humankind's greatest challenges," from pollution to water scarcity.

The chemists worked separately but added to each other's breakthroughs over decades, beginning with Robson's work in the 1980s.

The scientists were able to devise stable atomic structures that preserved holes of specific sizes that allowed gas or liquid to flow in and out. The holes can be customized to match the size of specific molecules that scientists or engineers want to hold in place, such as water, carbon dioxide or methane.

That level of control is quite rare in chemistry.

A relatively small amount of the structure—which combines metal nodes and organic rods, somewhat like the interchangeable building pieces in Tinker Toys—creates many organized holes and a huge amount of surface area inside.

Why the work matters

Today researchers around the world are exploring possibilities that include using the frameworks to remove greenhouse gases from the atmosphere and pollution from industrial sites. Another possibility is to use them to harvest moisture from desert air, perhaps to one day provide clean drinking water in arid environments.

Scientists are also investigating using the structures for targeted drug delivery. The idea is to load them with medicine that may be slowly released inside the body. It could be a better way to deliver low doses continually.

The research "could be really, really valuable" in many industries.

Nobel committee announcement:

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2025 to

Susumu Kitagawa, Kyoto University, Japan

Richard Robson, University of Melbourne, Australia

Omar M. Yaghi, University of California, Berkeley, U.S.

"for the development of metal-organic frameworks"

Their molecular architecture contains rooms for chemistry

The Nobel Prize laureates in chemistry 2025 have created molecular constructions with large spaces through which gases and other chemicals can flow. These constructions, metal-organic frameworks, can be used to harvest water from desert air, capture carbon dioxide, store toxic gases or catalyze chemical reactions.

https://www.nobelprize.org/prizes/chemistry/2025/press-release/

Comment by Dr. Krishna Kumari Challa yesterday

Many newborn baby deaths linked to preventable or treatable factors

A new study has identified the most critical risk factors linked to neonatal deaths worldwide, providing comprehensive evidence to help guide global efforts to save newborn lives.

Researchers reviewed more than 60 studies published in the past 35 years, covering more than 50 risk factors for neonatal mortality—defined as a baby dying in the first 28 days of life.

The paper, "Risk factors for neonatal mortality: an umbrella review of systematic reviews and meta-analyses," is published in eClinicalMedicine.

It found strong evidence of conditions and factors that significantly increase the likelihood of neonatal mortality, covering maternal health and lifestyle factors (obesity, prenatal opioid exposure, anemia, bleeding disorders), socioeconomic and environmental factors (maternal age, low occupational status, arsenic exposure), neonatal factors (preterm birth, delayed breastfeeding, low birthweight) and protective factors (antenatal care, health facility delivery).

Babies born with low birthweight face more than 15 times the risk of dying compared to those born at a healthy weight, babies born preterm face up to seven times higher risk, delaying breastfeeding by more than 24 hours after birth increases the risk by 60% to 70%, while mothers who receive antenatal care can reduce the risk of losing their baby by up to 85%.

These are staggering numbers, but they are also clear, actionable areas where change could save countless lives, the researchers say.

These are preventable and treatable issues—if we get this right, the impact will be profound across the globe.

Bereket Kefale et al, Risk factors for neonatal mortality: an umbrella review of systematic reviews and meta-analyses, eClinicalMedicine (2025). DOI: 10.1016/j.eclinm.2025.103525

Comment by Dr. Krishna Kumari Challa yesterday

Microplastics found to change gut microbiome in first human-sample study

New research presented at UEG Week 2025 shows that microplastics—plastic particles smaller than 5 mm commonly found in the environment—can alter the human gut microbiome, with some changes resembling patterns linked to depression and colorectal cancer.

The study used stool samples from five healthy volunteers to grow ex vivo gut microbiome cultures. These cultures were then exposed to five common microplastic types—polystyrene, polypropylene, low-density polyethylene, poly(methyl methacrylate) and polyethylene terephthalate

—at concentrations reflecting estimated human exposure, as well as higher doses to investigate potential dose-dependent effects.

While total and viable bacterial cell counts remained largely unchanged, microplastic-treated cultures showed a consistent and significant increase in acidity (lower pH levels) compared to controls, indicating altered microbial metabolic activity.

Further analysis revealed microplastic-specific shifts in bacterial composition, with certain bacterial groups increasing or decreasing depending on the microplastic type. Changes were observed across several bacterial families, including Lachnospiraceae, Oscillospiraceae, Enterobacteriaceae and Ruminococcaceae, with the majority occurring within the phylum Bacillota—a key group of gut bacteria important for digestion and overall gut health.

These shifts in bacterial composition were accompanied by changes in the chemicals produced by the bacteria, some of which corresponded with the observed decreases in pH. Certain microplastic types altered levels of valeric acid and 5-aminopentanoic acid, while others affected lysine or lactic acid, highlighting the complexity of microplastic-microbiome interactions.

Importantly, some of these microplastic-induced changes in microbial composition reflected patterns previously linked to diseases such as depression and colorectal cancer, underscoring the potential implications of microplastic exposure for disease risk.

Pacher-Deutsch, C et al. Microplastic-induced alterations in gut microbiome and metabolism: Insights from an ex vivo bioreactor model. Presented at UEG Week 2025; 7 October 2025; Berlin, Germany.

Comment by Dr. Krishna Kumari Challa yesterday

Instructions help you remember something better than emotions or a good night's sleep, scientists find

A good night's sleep has long been understood to help us consolidate new memories, but we don't understand how. Associations with negative feelings like fear or stress can improve recall, but intentionally trying to remember can also be effective. But these two mechanisms are very different—one involuntary, one deliberate. Which influences memory most?

To investigate, researchers asked participants to remember or forget words, some of which had negative emotional associations. They found that instructions improved recall more than emotion.

Researchers found that when it comes to memory, instructions do indeed work better than emotion. People were more likely to recall words they had been asked to remember. However, emotions did play a part: words participants had been asked to remember that had negative connotations were more likely to be remembered.

This suggests that although instructions were the primary influence on recall, emotional cues could amplify the effect of instructions. Emotions also increased the chances of false memories: negative foils were more likely to be misremembered as words participants had been asked to remember. 

During encoding, we will devote more attentional resources to words that we are told explicitly to remember. Along similar lines, cognitive control systems can 'tag' information as relevant, biasing the hippocampus to prioritize it. This increases the likelihood that the memory will be reactivated during sleep and transferred to long-term storage.

Lastly, instructions don't just enhance relevant items, they also suppress irrelevant ones. By inhibiting competing memories, remember-cued items face less interference, which improves recall.

Unexpectedly, whether participants had slept had no effect on how well they recalled words. However, the different types of brain wave activity measured by the EEG were linked to recall. For example, higher levels of REM theta power, a measure of REM sleep, were associated with the misremembering of negative foils.

Sleep spindles were associated with better recall of negative, remember-cued words.Sleep spindles are widely implicated in the transfer of information from temporary hippocampal storage to more stable representations in the neocortex.

This could indicate that sleeping only consolidates some memories—prioritizing things you're motivated to remember over things which are emotional—and that sleeping in general is less significant than your brain's activity during sleep. However, more research is needed to confirm this.

Top-Down Instruction Outweighs Emotional Salience: Nocturnal Sleep Physiology Indicates Selective Memory Consolidation, Frontiers in Behavioral Neuroscience (2025). DOI: 10.3389/fnbeh.2025.1643449

Comment by Dr. Krishna Kumari Challa yesterday

Nobel Prize in physics goes to 3 scientists whose work advanced quantum technology (Update)

Three scientists won the Nobel Prize in physics this week for research on the strange behavior of subatomic particles called quantum tunneling that enables the ultra-sensitive measurements achieved by MRI machines and lays the groundwork for better cellphones and faster computers.

The work by John Clarke, Michel H. Devoret and John M. Martinis, took the seeming contradictions of the subatomic world—where light can be both a wave and a particle and parts of atoms can tunnel through seemingly impenetrable barriers—and applied them in the more traditional physics of digital devices. The results of their findings are just starting to appear in advanced technology and could pave the way for the development of supercharged computing.

The prize-winning research in the mid-1980s took the subatomic "weirdness of quantum mechanics" and found how those tiny interactions can have real-world applications.

The experiments were a crucial building block in the fast-developing world of quantum mechanics.

Nobel committee announcement:

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2025 to

John Clarke, University of California, Berkeley, U.S.

Michel H. Devoret, Yale University, New Haven, CT and University of California, Santa Barbara, U.S.

John M. Martinis, University of California, Santa Barbara, U.S.

"for the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit"

Their experiments on a chip revealed quantum physics in action

Comment by Dr. Krishna Kumari Challa on Tuesday

Scientists reverse Alzheimer's in mice using nanoparticles

A research team has demonstrated a nanotechnology strategy that reverses Alzheimer's disease in mice.

Unlike traditional nanomedicine, which relies on nanoparticles as carriers for therapeutic molecules, this approach employs nanoparticles that are bioactive in their own right: "supramolecular drugs." The work has been published in Signal Transduction and Targeted Therapy.

Instead of targeting neurons directly, the therapy restores the proper function of the blood-brain barrier (BBB), the vascular gatekeeper that regulates the brain's environment. By repairing this critical interface, the researchers achieved a reversal of Alzheimer's pathology in animal models.

The team demonstrated that targeting a specific mechanism enables undesirable "waste proteins" produced in the brain to pass through this barrier and be eliminated in the blood flow. In Alzheimer's disease, the main "waste" protein is amyloid-β (Aβ), whose accumulation impairs the normal functioning of the neurons.

Researchers used mouse models that are genetically programmed to produce larger amounts of Aβ protein and develop a significant cognitive decline mimicking Alzheimer's pathology. They administered only three doses of the supramolecular drugs and afterward regularly monitored the evolution of the disease.

Only one hour after the injection, they observed a reduction of 50–60% in Aβ amount inside the brain.

In one of the experiments, they treated a 12-month-old mouse (equivalent to a 60-year-old human) with the nanoparticles and analyzed its behavior after six months. The result was impressive: the animal, aged 18 months (comparable to a 90-year-old human), had recovered the behavior of a healthy mouse.

The long-term effect comes from restoring the brain's vasculature. 

What's remarkable is that these nanoparticles act as a drug and seem to activate a feedback mechanism that brings this clearance pathway back to normal levels.

 Multivalent modulation of endothelial LRP1 induces fast neurovascular amyloid-β clearance and cognitive function improvement in Alzheimer's disease models, Signal Transduction and Targeted Therapy (2025). DOI: 10.1038/s41392-025-02426-1

Comment by Dr. Krishna Kumari Challa on Tuesday

Strange 'rogue' planet spotted guzzling matter like a star

A mysterious "rogue" planet has been observed gobbling six billion tons of gas and dust a second—an unprecedented rate that blurs the line between planets and stars.

Unlike Earth and other planets in our solar system which orbit the sun, rogue planets float freely through the universe untethered to a star.

Scientists estimate there could be trillions of rogue planets in our galaxy alone—but they are difficult to spot because they mostly drift quietly along in perpetual night.

These strange objects intrigue astronomers because they are neither a star nor a proper planet. 

Their origin remains an open question: are they the lowest-mass objects formed like stars, or giant planets ejected from their birth systems?

The team of researchers behind the new study were stunned to observe an astonishing growth spurt in a rogue planet around 620 light years from Earth in the constellation Chamaeleon. The planet, officially called Cha 1107-7626, has a mass five to 10 times bigger than Jupiter. 

 The object is "still in its infancy," being roughly one or two million years old.

The object grows by sucking in matter from a disk that surrounds it—a process called accretion.

But what the astronomers saw happen to Cha 1107-7626 "blurs the line between stars and planets". 

In August this year, the planet suddenly started devouring matter from its disk at a record-breaking six-billion-tons per second—eight times faster than a few months earlier.

This is the strongest accretion episode ever recorded for a planetary-mass object.

By comparing light emitted before and during this binge-eating session, the scientists discovered that magnetic activity was playing a role in driving matter towards the object.

This phenomenon has previously only been observed in stars.

The chemistry in the disk also changed. Water vapor was detected in the disk during the accretion episode, but not beforehand.

This is also something that has previously been observed in stars—but never for a forming planet.

No matter how weird, Cha 1107-7626 is still expected to have similar characteristics to huge planets, because it is of similar size. Unlike stars, this object is "not massive enough to ever have fusion reactions in the core".

Discovery of an Accretion Burst in a Free-Floating Planetary-Mass Object The Astrophysical Journal Letters (2025). DOI: 10.3847/2041-8213/ae09a8

Comment by Dr. Krishna Kumari Challa on Tuesday

Bacteria survive space launch and re-entry unharmed

A world-first study has proven microbes essential for human health can survive the extreme forces of space launch. The study has been published in npj Microgravity.

Space agencies are planning to send crews to Mars within decades, but sustaining life on the red planet would be more difficult if important bacteria die during the flight.

Now a study has found the spores of Bacilus subtilis, a bacterium essential for human health, can survive rapid acceleration, short-duration microgravity and rapid deceleration.

The spores of bacteria were launched more than 260 kilometers into the sky, then studied once their rocket fell back to Earth, in what is believed to be the first study of its kind in real conditions outside the lab.

Effects of Extreme Acceleration, Microgravity, and Deceleration on Bacillus subtilis Onboard a Suborbital Space Flight, npj Microgravity (2025). DOI: 10.1038/s41526-025-00526-4

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service