Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: How Big is the universe?Krishna: The total size of the universe is not known, and some scientists think it could be many times larger than the observable portion. For example, one hypothesis…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Why do some people commit crimes? What does science say about it?Krishna: It is easy to blame people. But did you know that the way your brain wires or rewires because of different situations it…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
Cars may be a modern phenomenon, but motion sickness is not. More than 2,000 years ago, the physician …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
"De-evolution" or "devolution" is a concept suggesting that species can revert to more primitive forms over time.Some scientists don't accept this concept at all. They say Evolution is a continuous…Continue
Comment
The researchers found that tracking occurred even when users cleared or deleted cookies. The results showed notable differences in bid values and a decrease in HTTP records and syncing events when fingerprints were changed, suggesting an impact on targeting and tracking.
Additionally, some of these sites linked fingerprinting behavior to backend bidding processes—meaning fingerprint-based profiles were being used in real time, likely to tailor responses to users or pass along identifiers to third parties.
Perhaps more concerning, the researchers found that even users who explicitly opt out of tracking under privacy laws like Europe's General Data Protection Regulation (GDPR) and California's California Consumer Privacy Act (CCPA) may still be silently tracked across the web through browser fingerprinting.
Based on the results of this study, the researchers argue that current privacy tools and policies are not doing enough. They call for stronger defenses in browsers and new regulatory attention to fingerprinting practices. They hope that their FPTrace framework can help regulators audit websites and providers who participate in such activities, especially without user consent.
Zengrui Liu et al, The First Early Evidence of the Use of Browser Fingerprinting for Online Tracking, Proceedings of the ACM on Web Conference 2025 (2025). DOI: 10.1145/3696410.3714548
Part 2
Clearing your cookies is not enough to protect your privacy online. New research has found that websites are covertly using browser fingerprinting—a method to uniquely identify a web browser—to track people across browser sessions and sites.
The findings are published as part of the Proceedings of the ACM on Web Conference 2025.
Fingerprinting has always been a concern in the privacy community, but until now, we had no hard proof that it was actually being used to track users.
When you visit a website, your browser shares a surprising amount of information, like your screen resolution, time zone, device model and more. When combined, these details create a "fingerprint" that's often unique to your browser. Unlike cookies—which users can delete or block—fingerprinting is much harder to detect or prevent. Most users have no idea it's happening, and even privacy-focused browsers struggle to fully block it.
It is like a digital signature you didn't know you were leaving behind. You may look anonymous, but your device or browser gives you away.
This research marks a turning point in how computer scientists understand the real-world use of browser fingerprinting by connecting it with the use of ads.
To investigate whether websites are using fingerprinting data to track people, the researchers had to go beyond simply scanning websites for the presence of fingerprinting code. They developed a measurement framework called FPTrace, which assesses fingerprinting-based user tracking by analyzing how ad systems respond to changes in browser fingerprints.
This approach is based on the insight that if browser fingerprinting influences tracking, altering fingerprints should affect advertiser bidding—where ad space is sold in real time based on the profile of the person viewing the website—and HTTP records—records of communication between a server and a browser.
This kind of analysis lets the researchers go beyond the surface. They were able to detect not just the presence of fingerprinting, but whether it was being used to identify and target users—which is much harder to prove.
Part 1
Wildfires pollute waterways and could affect their ability to sequester carbon, recent research shows.
When forests burn, they release ash, soil particles and chemicals into the environment. In a Science of The Total Environment study which analyzed water quality and wildfire data, researchers were able to link increases in the concentrations of compounds like arsenic and lead, as well as nutrients such as nitrogen and phosphorus, to fires which had burned within the river's basin months prior.
Using monitoring data collected by Environment Canada over the last 20 years, they calculated that up to 16.3% of the variation in water quality could be attributed to wildfires.
Black carbon is formed when fires burn the carbon in trees. Black carbon cycles very slowly in the environment, especially the particulate form, and may sequester carbon from the atmosphere when it is buried in the ocean.
In a study earlier in 2025, researchers found that there is an important seasonal aspect to this. Most of the water in the northern rivers currently comes from snowmelt, but with climate change, this could shift to being more rain-driven in the future.
This change could lead to more rapidly degradable dissolved black carbon being exported to the ocean, which means that this carbon sequestration may lessen in the future and black carbon could become an additional source of carbon dioxide to the atmosphere.
Emily Brown et al, Cumulative effects of fire in the Fraser River basin on freshwater quality and implications for the Salish Sea, Science of The Total Environment (2025). DOI: 10.1016/j.scitotenv.2025.179416
**
For the first time, a research team has tracked in real time how individual atoms combine to form a cluster and which processes are involved.
To achieve this, the researchers first isolated magnesium atoms using superfluid helium and then used a laser pulse to trigger the formation process. The researchers were able to observe this cluster formation and the involved energy transfer between individual atoms with a temporal resolution in the femtosecond range.
Normally, magnesium atoms instantaneously form tight bonds, which means that there is no defined starting configuration for observation of the bond-formation processes
The researchers have solved this problem, which often arises when observing chemical processes in real time, by conducting experiments with superfluid helium droplets. These droplets act like ultra-cold "nano-fridges" that isolate the individual magnesium atoms from each other at extremely low temperatures of 0.4 Kelvin (= -272.75 degrees Celsius or 0.4 degrees Celsius above absolute zero) at a distance of a millionth of a millimeter.
This configuration allowed them to initiate cluster formation with a laser pulse and track it precisely in real time.
The researchers observed the processes triggered by the laser pulse using photoelectron and photoion spectroscopy. While the magnesium atoms combined to form a cluster, they were ionized with a second laser pulse.
Researchers were able to reconstruct the processes involved in detail on the basis of the ions formed and electrons released.
A key discovery here is energy pooling. As they bind to each other, several magnesium atoms transfer the excitation energy received from the first laser pulse to a single atom in the cluster, so that it reaches a much higher energy state. This is the first time that energy pooling has been demonstrated with time resolution.
Michael Stadlhofer et al, Real-time tracking of energy flow in cluster formation, Communications Chemistry (2025). DOI: 10.1038/s42004-025-01563-6
Waste can turn to rock within decades
Industrial waste is turning into solid rock in as little as 35 years. Researchers analysed a cliff made up of millions of cubic metres of slag produced by now-defunct iron and steel foundries along a stretch of the English coast. A coin from 1934 and an aluminium can tab manufactured after 1989 were embedded in the material, showing that it had lithified — essentially turning into rock — within that period. “All the activity we’re undertaking at the Earth’s surface will eventually end up in the geological record as rock, but this process is happening with remarkable, unprecedented speed,” said study co-author John MacDonald.
Industrial waste can turn into rock in as little as 35 years, new research reveals, instead of the thousands or millions of years previously assumed. The finding challenges what scientists know about rock formation, revealing an entirely new "anthropoclastic rock cycle."
The scientists found that waste from seaside industrial plants turns into rock especially rapidly due to the ocean water and air, which activate minerals such as calcium and magnesium in the waste, or slag, cementing it together faster than natural sediments.
Researchers dubbed this newly discovered process the "rapid anthropoclastic rock cycle." The findings challenge long-standing theories about how rocks form and suggest industries have far less time to dispose of their waste properly than previously thought
https://pubs.geoscienceworld.org/gsa/geology/article-abstract/doi/1...
https://www.livescience.com/planet-earth/geology/industrial-waste-i...
A careful alignment of three powerful lasers could generate a mysterious fourth beam of light that is throttled out of the very darkness itself.
What sounds like occult forces at work has been confirmed by a simulation of the kinds of quantum effects we might expect to emerge from a vacuum when ultra-high electromagnetic fields meet.
What we think of as empty space is – on a quantum level – an ocean of possibility. Fields representing all kinds of physical interactions hum with the promise of particles we'd recognize as the foundations of light and the building blocks of matter itself. These virtual particles essentially pop into and out of existence in fractions of a second.
All it takes for them to manifest longer-term is the right kind of physical persuasion that discourages them from canceling one another out; the kind of persuasion a series of strong electromagnetic fields might provide when arranged in a suitable fashion.
Using nothing but photons to generate the necessary electromagnetic fields, it's hoped the light being scattered out of the darkness won't be hidden in a fog of other particles, finally proving once and for all that it is possible in physics to squeeze something out of nothing.
A team of researchers from the University of Oxford in the UK and the University of Lisbon in Portugal used a semi-classical equation solver to simulate quantum phenomena in real time and in three dimensions, testing predictions on what ought to occur when incredibly intense laser pulses combine in empty space.
Your DNA is continually damaged by sources both inside and outside your body. One especially severe form of damage called a double-strand break involves the severing of both strands of the DNA double helix.
Double-strand breaks are among the most difficult forms of DNA damage for cells to repair because they disrupt the continuity of DNA and leave no intact template to base new strands on. If mis-repaired, these breaks can lead to other mutations that make the genome unstable and increase the risk of many diseases, including cancer, neurodegeneration and immunodeficiency.
Cells primarily repair double-strand breaks by either rejoining the broken DNA ends or by using another DNA molecule as a template for repair. However, researchers discovered that RNA, a type of genetic material best known for its role in making proteins, surprisingly plays a key role in facilitating the repair of these harmful breaks.
These insights could not only pave the way for new treatment strategies for genetic disorders, cancer and neurodegenerative diseases, but also enhance gene-editing technologies.
Artificial light may be lengthening the growing season in urban environments by as much as 3 weeks compared to rural areas, according to an analysis of satellite data from 428 urban centers in the Northern Hemisphere over 7 years, published in Nature Cities.
Rapid urbanization is leading to hotter and brighter cities. More specifically, buildings and concrete absorb and radiate heat, causing urban heat islands, in which urban areas have higher atmospheric temperatures throughout the day and night compared to their surroundings. Likewise, the amount of artificial light at night has increased by 10% in cities within the past decade.
Light and temperature also largely regulate plant growing seasons. For example, increased lighting and temperature cause trees in cities to bud and flower earlier in the spring and change color later in the autumn than trees in rural surroundings.
Researchers analyzed satellite observations, taken between 2014 and 2020, of 428 cities in the Northern Hemisphere—including New York City, Paris, Toronto, and Beijing—and data on artificial light at night, near-surface air temperature and plant growing seasons.
They found that the wattage of artificial light at night increases exponentially from rural areas towards urban centers. Meng and colleagues suggest that this increased amount of light appears to influence the start and end of urban growing seasons more than the increase of temperature from rural to urban areas.
They also found that the effect of artificial light is especially pronounced at the end of the growing season compared to its influence on the start. More specifically, the start of the growing season is an average of 12.6 days earlier than in rural surroundings and the end is 11.2 days later in the cities analyzed.
The authors suggest that the effect of artificial light on the growing season may be further complicated by the relatively recent general switch from high-pressure sodium lamps to LED lighting, which plants may be more responsive to.
Lvlv Wang et al, Artificial light at night outweighs temperature in lengthening urban growing seasons, Nature Cities (2025). DOI: 10.1038/s44284-025-00258-2
Technologies enabling safe visual recognition in low-visibility environments are gaining increasing attention across sectors such as autonomous driving, aviation, and smart transportation. Thick fog remains a major challenge on highways, mountainous roads, and airport runways, where vision-based recognition systems frequently fail.
Traditional visible light cameras, LiDAR, and thermal infrared (IR) sensors experience a sharp drop in signal-to-noise ratio(SNR) under scattering conditions, making object and pedestrian detection unreliable. To overcome these challenges, researchers are seeking near-infrared (NIR) sensors that can operate stably and with low noise in real-world conditions.
A research team has developed a high-sensitivity organic photodetector (OPD) that maintains ultra-low noise performance even in light-scattering environments.
The study is published in the journal Advanced Materials.
The team successfully reconstructed transmission images in simulated fog and smoke conditions and quantitatively verified the sensor's performance.
The study is notable as it presents the first experimental demonstration of a hardware-based visibility enhancement system in realistic fog-like environments—following the team's earlier development of an AI-based software fog removal technology that received a CES 2025 Innovation Award.
Based on this achievement, the team is advancing a software-hardware integrated solution for visibility enhancement, targeting applications in autonomous driving, smart transportation infrastructure, and drone-based surveillance.
A core innovation of the OPD lies in a self-assembled monolayer electronic blocking layer developed by the team, called 3PAFCN.
This layer, characterized by a deep HOMO energy level and high surface energy, effectively suppresses dark current and reduces interfacial charge traps, thereby enhancing device stability and responsiveness.
Through this structural innovation, the OPD achieved a low noise current of 2.18 fA, along with the highest detectivity reported among NIR OPDs of its kind—surpassing the performance of commercial silicon-based photodetectors and indicating strong commercialization potential.
The team also constructed a laboratory environment simulating real fog, where they conducted single-pixel imaging experiments using the new OPD. Even under low-light conditions where visible-spectrum sensors failed to detect targets, the OPD successfully captured optical signals and reconstructed object shapes.
Seunghyun Oh et al, Robust Imaging through Light‐Scattering Barriers via Energetically Modulated Multispectral Organic Photodetectors, Advanced Materials (2025). DOI: 10.1002/adma.202503868
A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists.
The European Space Agency released the eclipse pictures at the Paris Air Show this week. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of miles (kilometers) above Earth.
Flying 492 feet (150 meters) apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light.
It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 5 feet (1.5 meters) in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links.
Dubbed Proba-3, the $210 million mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours.
Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing.
Source: ESA
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!