SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 16 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Don't use Google Search engines to diagnose your health condition

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 1 Reply

Q: Is it bad to use Google search engine to get information on medical issues?Krishna: Yes! Undoubtedly!Why? Because you use your 'symptoms' to search.And because a wide range of symptoms are common…Continue

Waves

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 20 hours ago. 1 Reply

Q: How do waves form?Krishna: Waves are created by energy passing through water, causing it to move in a circular motion (water's motion ). The rise and fall of water molecules creates a wave that…Continue

Bacterial infections could be trigger for type 1 diabetes

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

For the first time, scientists have found that proteins from bacteria can trigger the immune system to attack insulin-producing cells, leading to the development of type 1 diabetes.…Continue

Why use vaccines?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply

Q: Why do vaccine believers start mocking, insulting, labeling or guilt-tripping when you educate them that healthy immune system is the one that stops pathogens and prevent diseases, not the pharma…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa 18 hours ago

Comment by Dr. Krishna Kumari Challa 19 hours ago

Human genome stored on 'everlasting' memory crystal

Scientists have stored the full human genome on a 5D memory crystal—a revolutionary data storage format that can survive for billions of years.

 They hope that the crystal could provide a blueprint to bring humanity back from extinction thousands, millions or even billions of years into the future, should science allow.

The technology could also be used to create an enduring record of the genomes of endangered plant and animal species faced with extinction.

The 5D memory crystal was developed by the University of Southampton's Optoelectronics Research Center (ORC).

Unlike other data storage formats that degrade over time, 5D memory crystals can store up to 360 terabytes of information (in the largest size) without loss for billions of years, even at high temperatures. It holds the Guinness World Record (awarded in 2014) for the most durable data storage material.

The crystal is equivalent to fused quartz, one of the most chemically and thermally durable materials on Earth. It can withstand the high and low extremes of freezing, fire and temperatures of up to 1,000°C. The crystal can also withstand direct impact force of up to 10 tons per cm2 and is unchanged by long exposure to cosmic radiation.

The longevity of the crystals means they will outlast humans and other species.

The crystal is stored in the Memory of Mankind archive—a special time capsule within a salt cave in Hallstatt, Austria.

Comment by Dr. Krishna Kumari Challa 19 hours ago

The mystery of human wrinkles

A research team successfully recreated the structure of wrinkles in biological tissue in vitro, uncovering the mechanisms behind their formation. Their findings were published on August 19 in the journal Nature Communications.

While wrinkles are often associated with skin aging, many organs and tissues, including the brain, stomach, and intestines, also have distinct wrinkle patterns. These structures play a key role in regulating cellular states and differentiation, contributing to the physiological functions of each organ.

Understanding how biological tissues fold and form wrinkles is vital for understanding the complexity of living organisms beyond cosmetic concerns. This knowledge can be central to advancing research in areas such as skin aging, regenerative therapies, and embryology.

Researchers tried  to replicate both the hierarchical deformation of a single deep wrinkle caused by a strong compressive force and the formation of numerous small wrinkles under lighter compression.

In the process the team also discovered that factors such as the porous structure of the underlying ECM, dehydration, and the compressive force applied to the epithelial layer are crucial to the wrinkle formation process. Their experiments revealed that compressive forces deforming the epithelial cell layer caused mechanical instability within the ECM layer, resulting in the formation of wrinkles.

Additionally, they found that dehydration of the ECM layer was a key factor in the wrinkle formation process. These observations closely mirrored the effects seen in aging skin where dehydration of the underlying tissue layer leads to wrinkle development, providing a mechanobiological model for understanding wrinkle formation.

 Jaeseung Youn et al, Tissue-scale in vitro epithelial wrinkling and wrinkle-to-fold transition, Nature Communications (2024). DOI: 10.1038/s41467-024-51437-z

Comment by Dr. Krishna Kumari Challa 20 hours ago

It's not just surprising to find this activity in the SC; it could mean something about why this brain region is being recruited to solve such complex tasks. Since it is present across all vertebrates, from primitive sharks to modern humans, it was one of the earliest brain regions that evolved to help process visual inputs and generate corresponding movements.

But in this new study, it's also involved in decidedly non-spatial functions. Could this be a sign that spatial processing provides a special "oomph" to problem-solving?

The researchers pointed out the kind of eye movements and hand gestures that humans make when we're asked to recall something or make decisions. If someone asks what you had for dinner last night, for example, your eyes often drift upward, as if the answer were written on the ceiling. Or when weighing a decision between two choices, you might move your hands up and down like two sides of a balance scale.
Some of this data might be telling us is that the reason we're making these kinds of spatial gestures and eye movements is because the spatial parts of the brain are getting recruited into helping us perform these non-spatial cognitive functions,
We've all had the experience of struggling to understand something written in text—like a long press release about a neuroscience study—but having it instantly click into place when the same information is presented in a graphic.
They say a picture is worth 1,000 words—even a very simple spatial diagram can rapidly convey so much more information than you can possibly describe. It's like the brain has created this beautiful mental graph paper which it can use to solve both spatial and non-spatial problems.

 Barbara Peysakhovich et al, Primate superior colliculus is causally engaged in abstract higher-order cognition, Nature Neuroscience (2024). DOI: 10.1038/s41593-024-01744-x

Part 2

**

Comment by Dr. Krishna Kumari Challa 20 hours ago

Brain region that controls eye movements found to also play important role in higher cognitive functions

The superior colliculus is a midbrain region that is traditionally thought to help animals orient themselves toward important locations in space, like directing their eyes and head toward a bright flash of light. New research shows that this part of the brain also plays a role in complex cognitive tasks like visual categorization and decision making.

In the study, published in Nature Neuroscience, scientists measured the information contained in patterns of brain cell activity across multiple brain regions involved in visual category decisions. The researchers monitored activity in the superior colliculus (SC) and part of the posterior parietal cortex (PPC), a region of the cerebral cortex that is important for visual categorical decisions.

The researchers saw that activity in the SC was even more involved than the PPC in guiding the subjects' category decisions, suggesting that it helps coordinate higher-order cognitive processes traditionally thought to take place in the neocortex.

This evolutionarily ancient brain structure that seems to be even more involved in complex cognitive decisions than the cortical areas the researchers studied in their experiments.

All animals, from fish and reptiles to mammals like primates and humans, need to quickly distinguish and categorize objects in their field of vision. Is the object moving toward them an obstacle or a threat? Is that thing darting by a predator or prey?

The SC is a region in the brain that is evolutionarily conserved across all vertebrates, even those without a more sophisticated neocortex. It helps orient movements of the head and eyes toward visual stimuli, and it was traditionally believed to kick off reflexive motor actions by relaying inputs from upstream brain regions.

However, recent research has shown that it is also involved in complex tasks like selecting an orientation point and paying attention to stimuli at different spatial locations.

Part 1

Comment by Dr. Krishna Kumari Challa yesterday

The hidden health risks of styrene and ethylbenzene exposure

Type 2 diabetes mellitus (T2DM) is a critical public health issue, with its prevalence expected to rise sharply worldwide. Recent evidence points to environmental pollution, specifically exposure to hazardous chemicals like styrene and ethylbenzene, as a contributing factor for the disease.

Found in plastics, synthetic rubbers, and resins, these pollutants are pervasive in the environment and pose significant health threats. Addressing these challenges requires a deeper understanding of how environmental and genetic factors combine to influence T2DM risk.

A new study,  published  in Eco-Environment & Health, followed 2,219 adults from the Wuhan-Zhuhaicohort over six years to investigate the effects of styrene and ethylbenzene exposure on T2DM development. Using urinary biomarkers and genetic risk scores, the study assessed the combined impact of environmental exposure and genetic predisposition.

The findings demonstrate that exposure to styrene and ethylbenzene significantly elevates the risk of T2DM. The research highlights that individuals with high exposure levels had a substantially increased risk, which was further intensified by genetic susceptibility. Participants with both high exposure and high genetic risk faced the greatest likelihood of developing T2DM, illustrating a potent additive interaction.

This suggests that the joint impact of environmental pollutants and genetic factors on T2DM is more severe than their individual contributions, underscoring the need to control environmental exposures, particularly for those with genetic vulnerabilities.

Linling Yu et al, Styrene and ethylbenzene exposure and type 2 diabetes mellitus: A longitudinal gene-environment interaction study, Eco-Environment & Health (2024). DOI: 10.1016/j.eehl.2024.07.001

**

Comment by Dr. Krishna Kumari Challa yesterday

What is the microbiome?

Comment by Dr. Krishna Kumari Challa yesterday

Bacterial infections could be trigger for type 1 diabetes, new research suggests

For the first time, scientists have found that proteins from bacteria can trigger the immune system to attack insulin-producing cells, leading to the development of type 1 diabetes.

The new research showed that killer T-cells—a type of white blood cell that's involved in tackling bacterial infections—can cause type 1 diabetes when activated by bacteria. The researchers showed that proteins from bacterial species known to infect humans could generate killer T-cells that could kill insulin-producing cells.

This research expands on their previous studies, which demonstrated that killer T-cells play a major role in initiating type 1 diabetes by killing insulin producing cells. 

Type 1 diabetes is an autoimmune disease that usually affects children and young adults, where the cells that produce insulin are attacked by the patient's own immune system. This leads to a lack of insulin, meaning that people living with type 1 diabetes need to inject insulin multiple times a day to control their blood sugar levels.

There is currently no cure for type 1 diabetes and patients require life-long treatment. People living with type 1 diabetes may also develop medical complications later in life, so there is an urgent need to understand the underlying causes of the condition to help us find better treatments.

In laboratory experiments, the researchers introduced bacterial proteins into cell lines from healthy donors and monitored the reaction of killer T-cells from these donors. They found that strong interaction with the bacterial proteins triggered killer T-cells to attack cells that make insulin.

The research, published in the Journal of Clinical Investigation, provides the first evidence of how proteins from bacterial germs can trigger the type of killer T-cells seen in patients with type 1 diabetes. The team hopes that knowing more about this process, will allow new ways to diagnose, prevent, or even halt the development of type 1 diabetes.

 Garry Dolton et al, HLA A*24:02–restricted T cell receptors cross-recognize bacterial and preproinsulin peptides in type 1 diabetes, Journal of Clinical Investigation (2024). DOI: 10.1172/JCI164535

Comment by Dr. Krishna Kumari Challa yesterday

It sounds straightforward, but patients must be sedated for the procedure, which means they lose a day of work. Endoscopy is also expensive, and there's a shortage of doctors who can do it.

We're only catching 7% of cancers through endoscopy.

Doctors are turning to  artificial intelligence to identify additional characteristics that can improve their ability to identify those most likely to have Barrett's and esophageal cancer.

Researchers are developing an AI tool that scours the electronic medical records of  patients to find those who should be screened for Barrett's. The tool considers more than 7,500 distinct data points, including past medical procedures, lab test results, prescriptions and more. (Among the surprises: A patient's triglycerides and electrolytes had predictive value.)

This is probably something a human would not be able to do efficiently.

In tests, the overall accuracy of the tools was 84%. While those are substantial improvements, the team would like to bump that up to 90% .

Source: LA times

**

Part 2

Comment by Dr. Krishna Kumari Challa yesterday

How AI can help researchers make esophageal cancer less deadly

Approximately 600 times a day, the esophagus ferries whatever is in your mouth down to your stomach. It's usually a one-way route, but sometimes acid escapes the stomach and travels back up. That can damage the cells lining the esophagus, prompting them to grow back with genetic mistakes. Sometimes those mistakes culminate in cancer.

Esophageal cancer can be cured if it's discovered and treated before it burrows in deep or spreads to other organs. But that's rarely the case.

To improve on that situation, doctors say they don't necessarily need better medicines. What they need are better ways to find the cancer while it's still in its earliest, highly treatable stages.

And to do that, they need a breakthrough in screening for the disease.

Screening someone for esophageal cancer is not a trivial procedure.

The standard method involves inserting an endoscope—a flexible tube with a camera on one end—into a patient's throat and threading it down to the stomach. The camera allows doctors to inspect the esophagus up close and check for abnormal cells that could become cancerous.

The tube also serves as a conduit for tools that can collect tissue samples, which can be sent to a pathology lab for diagnostic analysis. If a doctor sees a growth that looks like early-stage cancer, it can be removed on the spot.

Part 1

 

Members (22)

 
 
 

Badge

Loading…

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service