Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: Is it a fact that cancer is also genetically inherited? If so, how much percentage of cancer affected patients have genetically inherited cancer? K: While most cancers are not directly inherited,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: What are wet bulb and dry bulb temperatures?Krishna: Dry bulb temperature is the temperature of the air as measured by a standard thermometer, while wet bulb temperature is the temperature…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 12 Replies 0 Likes
Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
Q: What is the definition of subjective reality? What is the definition of objective reality?Krishna: A person asked me this question sometime back:Why does our thinking differ so much? We are from…Continue
Comment
A genetically modified cow has produced proteins needed for human insulin in its milk, and the scientists behind the experiment have high hopes that a herd of these cattle could solve the world's insulin supply problems.
If such a herd were viable – and, based on this first case, that's still a long way off – the researchers think it could out-compete current insulin production methods, which rely on genetically modified yeast and bacteria.
While turning to cows for human insulin supply isn't new, the new study is the first time 'human' insulin production has been achieved in a genetically modified bovine.
Researchers inserted a particular segment of human DNA that codes for proinsulin (a protein that's converted to insulin) into the cell nuclei of 10 cow embryos, which were then inserted into the wombs of normal cows. Only one of these genetically modified embryos developed into a pregnancy, leading to the natural birth of a living, transgenic calf. When it reached maturity, the team made a variety of attempts to get the genetically modified cow pregnant, by artificial insemination, in vitro fertilization, and even the old-fashioned way. None were successful, but the team notes this may be more to do with how the embryo was created than the fact it was genetically modified.
Eventually they were able to get the cow to lactate via hormonal induction, using an undisclosed method .
The cow didn't lactate as much as it would during a pregnancy, but what little milk it did produce over a month was examined to look for specific proteins, using western blotting and mass spectrometry.
The blotting revealed two bands with similar molecular masses to human proinsulin and insulin, which were not present in the milk of non-transgenic cows. Mass spectrometry indicated the presence of the C-peptide that's removed from human proinsulin in the process of creating insulin, which suggests that enzymes in the cow's milk may have converted the 'human' proinsulin into insulin.
Part 1
The total solar eclipse isn't the only reason to keep your eyes to the sky this year. For the first time in 80 years, a star system 3,000 light years away will be visible to the naked eye thanks to a once-in-a-lifetime nova outburst.
NASA announced that the nova, which will create a "new" star in the night sky, will light up the night sky some time between now and September and be as bright as the North Star. One of only five recurring novae in our galaxy, it will be visible for a week before it fades back down.
What is nova?
There's a broad class of these sorts of events, and they typically share the trait of having two objects, or sometimes more than two objects, close to each other, and you're transferring mass from one to the other. Eventually, you build up enough mass on usually the hotter object that it ignites, in this case undergoing fusion, and then suddenly you get a very rapid release of energy so it gets much, much brighter.
The star system in question is T Coronae Borealis, or T CrB, and it contains a white dwarf and red giant, two stars that create the perfect conditions for a nova outburst.
A red giant is what happens when a star, like our sun, runs out of fuel and becomes larger and cooler, turning red instead of the white or yellow of a hot star. A white dwarf is what a red giant turns into when it runs out of even more fuel: a very compact star.
What happens when these two stars co-orbit one another is that the white dwarf steadily strips away the atmosphere of the expanding red giant. The white dwarf is much smaller and much more compact, so you build up a little disk of mostly hydrogen and maybe some helium as well sitting on the white dwarf.
Eventually enough of it builds up and basically ignites. It's not literally burning in the sense of fire; it's thermonuclear burn and you have hydrogen undergoing a fusion reaction.
As it undergoes that runaway thermonuclear reaction, the white dwarf gets hotter, bigger and brighter, making it easier for us to see it back on Earth. This entire process is part of the natural lifecycle of these stars and why they happen every 80 years. After a white dwarf like this goes nova, it goes back to stripping gas away from the red giant, building up gas at the same rate before eventually another outburst occurs.
https://news.northeastern.edu/2024/03/18/nova-explosion-new-star/
Admittedly, holograms were invented for a completely different purpose, to increase the resolution of electronic microscopy.
According to the scientists, the breakthrough of holograms in the fight against counterfeiting came when it was realized that once the original hologram was recorded, it could be copied mechanically by pressing it into another material. This has led to a substantial expansion in the production quantities of holograms.
Fictional films and their holograms of people and even entire cities have led to a rather diverse perception and interpretation of the term itself. The rapid advances in technology have allowed some fictional ideas to become reality, and today, even holograms in full concert arenas can be seen.
When strengthening the protective measures themselves, researchers encourage consumers to keep in mind that holograms can also be counterfeited, so he encourages everyone to inspect the holographic security labels and to remain alert.
Hologram manufacturers usually try to make holograms as bright as possible; the visible features, such as clear objects and different colors, do not glow by chance. Only specific elements of the brand are integrated into the image with different sizes of characters visible. If an observer sees a random glow, it is likely to be either a very unsophisticated hologram or a fake.
The inventors have developed another innovation. It is a digital application for smart devices called "HoloApp", which allows you to see what the hologram looks like on the screen. This enables a better understanding and experience of what a hologram should look like and the ability to identify if it is forged.
Patent filing: worldwide.espacenet.com/patent … 888B2?q=US11846888B2
Counterfeiting of various documents, banknotes, or tickets is a common problem that can be encountered in everyday life, even when shopping. Recognizing the scale and seriousness of the problem, researchers decided to look for ways to further reduce the risk of counterfeiting by inventing a new method to produce holographic security labels.
Holograms have been used as an anti-counterfeiting tool for some time. Now, they can be seen on pharmaceutical packaging, brand labels, and even toys. Holograms are much more difficult for forgers to counterfeit than, for example, the watermarks on banknotes, as they require complex micro and nano technologies that traditional printing houses lack.
To enhance the level of holographic protection against forgery and to address this worldwide problem, Lithuanian researchers from KTU Institute of Materials Science came up with the idea of combining two technologically different methods.
One of them is a dot-matrix hologram made of small dots that refract light. "Each dot, which is barely smaller than a human hair, records a periodic structure made up of lines known as a diffraction grating. It causes the light to play in a way that is visible to the observer's eye, similar to a CD or DVD. This dot-matrix hologram, although relatively faster and cheaper and used to expose large areas of the hologram, does not guarantee a very high level of protection.
This is why electron beam lithography is used to expose smaller areas of the hologram. It is a more advanced technology that allows to form high-resolution structures and is practically inaccessible to potential hologram counterfeiters.
The combination of these two techniques has received international recognition—the invention has been recognized by the US Patent and Trademark Office and the Japanese Patent Office. This protects the intellectual property created by the scientists and allows them to license it to interested companies.That's bad news for many materials, but it wreaks particular havoc on plastics when combined with heat. The combined effects of rising temperature and moisture create very challenging conditions for these polymers.
Xin-Feng Wei et al, Plastic pollution amplified by a warming climate, Nature Communications (2024). DOI: 10.1038/s41467-024-46127-9
part 2
Typically viewed as unrelated problems, global warming and plastic pollution are instead inextricably trapped in a "vicious circle" where one feeds the other, researchers report in Nature Communications. The mutually-reinforcing relationship escalates global warming, the degradation of materials, plastic waste and the leaching of toxic chemicals into the biosphere.
Plastics that we rely on every day will deteriorate more rapidly because of rising global temperatures, and one effect will be a demand for more plastics. Meeting that demand will further compound greenhouse emissions that drive up the global temperature. A self-reinforcing cycle is formed, creating a vicious circle between climate change and plastic pollution.
In 2019, plastics generated 3.4% of global greenhouse gas emissions, or about 1.8 billion tons, mostly on account of their production and conversion from fossil fuels, according to the Organization for Economic Co-operation and Development (OECD). By 2060 that amount is expected to more than double.
The researchers describe a feedback loop linking these emissions with heat, moisture and the weakening structural bonds that lend a wide range of advantageous properties to polymers, the term for materials—like plastic and rubber—that are formed from long chains of large molecules.
The higher the increase in temperature, the more the materials' properties are compromised. The stiffness of commonly used plastics like polyethylene, polypropylene and polyvinyl chloride decreases by more than 20% as temperatures climb between 23°C and 40°C.
This deterioration means more frequent replacement of polymer products—everything from clothing to auto parts and appliances—and consequently greater manufacturing volumes and rates.
Knock-on effects range from rendering food packaging unreliable to the fouling of waterways and fish habitats by an increase in microplastics, he says.
The report also documents the release of volatile organic compounds (VOCs) in a warming climate as well as other hazardous compounds including lubricants, flame retardants, plasticizers, antioxidants, colorants and UV/heat stabilizers. Heat will accelerate diffusion, evaporation and leaching of these substances into the air, soil, and water, the report says.
The researchers draw attention to the combined effects of heat and moisture, which rise together due to global warming. A warmer atmosphere increases the evaporation of moisture and can also hold more water vapour.
Part 1
Rank Country Global biodiversity index Global rank
1. Democratic Republic of Congo 214.43 16th
2. Tanzania 213.10 17th
3. South Africa 207.94 19th
4. Kenya 179.72 23rd
5. Cameroon 172.41 24th
6. Madagascar 162.29 26th
7. Angola 160.67 27th
8. Guinea 153.43 30th
9. Mozambique 144.30 31st
10. Uganda 136.65 33rd
In the case of mitochondrial recycling, this works as follows: If sufficient energy is available, a signal is transmitted from the insulin receptor on the cell surface to the mitochondria. Here, PINK1 blueprints are stored as mRNA molecules. When the insulin signal arrives, the blueprints are released by the mitochondria and the cell can produce additional PINK1 protein. This ensures that defective mitochondria are efficiently eliminated. In case of an energy shortage, or if the insulin receptor signal is missing, the blueprints for PINK1 remain tightly bound to the mitochondria.
On the one hand, the tight binding to mitochondria allows the PINK1 blueprints to hitchhike far into the nerve cells' long extensions. On the other hand, it reduces the availability of mRNA molecules for PINK1 production. PINK1 protein levels remain low and mitochondrial recycling is reduced—even though this can lead to the continued operation of damaged power plants.
A similar situation can occur when the transmission of signals from the insulin receptor to mitochondria is disturbed due to disease. Defective insulin signaling is a hallmark of diabetes and has also been observed in the brain in connection with Alzheimer's disease.
It is also known that inefficient mitochondrial quality control can contribute to various neurodegenerative diseases.
Insulin signaling regulates Pink1 mRNA localization via modulation of AMPK activity to support PINK1 function in neurons, Nature Metabolism (2024). DOI: 10.1038/s42255-024-01007-w
Part 2
The hormone insulin controls many cellular processes and adapts them to the body's current energy supply. One of the insulin-regulated processes is the quality control of mitochondria in neurons, scientists have discovered.
When sufficient energy is available in the body, insulin facilitates the elimination of defective mitochondria. When energy is scarce or when the insulin signal is interrupted, mitochondrial recycling is reduced and cells continue to use their old power plants, even potentially damaged ones. The continued operation of faulty mitochondria could affect aging processes and neurological diseases.
Nerve cells place special demands on their energy supply. Due to their extensive branching and their high energy needs, they keep a close watch on their cellular power plants, the mitochondria. The cells have to ensure that there are always sufficient mitochondria available in their long extensions, the axons, where the power plants fuel the cell's communication with its neighboring cells. This is why neurons transport mitochondria even to the cells' most remote locations.
Earlier research had shown that mitochondria carry along the blueprints of the PINK1 protein on their journey through the neuron.
PINK1 is a key protein that acts when mitochondria need to be removed because they are no longer functioning correctly.
It can mark mitochondria for recycling and is precisely controlled by the cells." A failure to keep PINK1 in check could lead to a shortage of mitochondria, whereas the continued operation of defective cellular power plants can damage a cell.
Researchers have now uncovered that the hormone insulin is involved in mitochondrial quality control in neurons. Insulin is well-known for its role in regulating a cell's sugar uptake. It also controls many processes inside cells to precisely adjust them to the body's current energy supply.
Part 1
People assume babies’ brains are simply not mature enough to form lasting memories. This is called infantile amnesia.
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!