SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 23 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Why do type 2 diabetics sometimes become thin if their condition is not managed properly?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Why do type 2 diabetics sometimes become thin if their condition is not managed properly?Earlier we used to get this answer to the Q : Type 2 diabetics may experience weight loss and become thin due…Continue

Real heart attacks won't be like the ones shown in Hollywood or Bollywoood

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Movies and TV serials shaped how many people imagine a heart attack—someone clutching their chest and collapsing dramatically. But those portrayals are misleading and shouldn't be expected, say the…Continue

Vaccine woes

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 13 Replies

Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue

Dad, this is why I scream when ever I hurt myself!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 5 Replies

When I was a very young school girl, I still remember very well, my Dad used to tell me to bear the pain out and not to scream and cry whenever I hurt myself and was in severe pain. I never ever saw…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on January 31, 2014 at 10:03am

Part 4-

Procedure

  1. Preparation
    • Begin topical application of tincture of iodine, applying eight millilitres of 2% tincture to a patch of skin on your abdomen every 24 hours, or two hours before public warning of impending fallout.
    • Prepare the wash room for use as a cleanup area. Make sure the wash tub, washing machine, and shower are accessible.
    • Close the wash room internal door.
    • Locate and make available dust masks and outerwear.
    • Bring the Geiger-Müller counter to just outside the wash room for use in contamination detection.
    • Sequester all domestic animals. Goats will be locked into their shelter using cattle panels. Chickens will be locked inside their coop.
    • Close greenhouse ventilation.
    • Close all windows in the house.
    • Have 50 litres of water on-hand.
    • Have a week's food supply on-hand.
  2. Routine
    • Wear a dust mask and cover as much exposed skin as possible whenever outside.
    • Enter and exit through the wash room only.
    • When outside, wear outer clothing that can be easily and quickly removed and "hosed down."
    • Animal feed and water is to be taken only from closed areas and closed containers.
    • Keep animal feed and water covered during transport.
    • Procedure on entry:
      1. To avoid contamination of the Geiger-Müller counter, have someone "clean" from inside the house go over you with the counter. Do not allow the counter to contact anything that may be contaminated.
      2. Any "hot" clothing (hat, gloves, mask) should be immediately put into the washer.
      3. If any "hot" clothing is detected, the person entering should immediately use the shower.
      4. After this decontamination procedure, re-check the person and the area for contamination. Spot-clean any local contamination with clean rags, which immediately go into the wash with the contaminated clothing. Do not re-use rags without laundering.
      5. Do not open the interior door until the wash room is "clean."
    • Do not harvest nor eat any plants that did not come from the sealed greenhouse or the grocery store.
    • If domestic animals have not been sequestered, do not eat any of their food products.
Comment by Dr. Krishna Kumari Challa on January 31, 2014 at 10:03am

Part 3- http://www.ecoreality.org/wiki/Radiation_fallout_plan

here are four levels of radiological emergency defined:

  1. Radiological watch: there has been an event somewhere on the planet that could credibly cause fallout of radioactive contaminants on Salt Spring Island. This includes nuclear power plant melt down, atmospheric nuclear testing, or nuclear war.
    • The protocol for a radiological watch is to begin monitoring ionizing events using a Geiger-Müller counter and to monitor public health authorities and international news.
  2. Public warning could happen between our local readings.
  3. Light fallout event is defined as when the outdoor ionizing event count exceeds two times the root-mean-square average of the readings from the past two days.
    • The protocol for a light fallout event is defined in this document.
  4. Heavy fallout event is defined by any ionizing event count that corresponds to the level defined by Canadian health authorities as acutely dangerous.
    • The protocol for a heavy fallout event is to follow Canadian health authorities' recommendations for evacuation.

Light fallout concerns

A light fallout event is not an acute radioactivity health concern; there will be no immediate danger of imminent sickness or death at this level. Rather, the concern is the inhalation or ingestion of radioactive dust, which can have long-term health impacts, including cancer.

The following procedure is designed to minimize long-term health impacts on humans and animals and their food supply.

Comment by Dr. Krishna Kumari Challa on January 31, 2014 at 9:59am

Part - 2 - how to minimize nuclear radiation / contamination:

It's vital to understand the difference between nuclear radiation and nuclear contamination.

A burst of radiation accompanies the initial blast, but the radiation load from fallout is completely determined by weather. So it is important to understand the prevailing winds and weather patterns when considering whether to leave a poor shelter for a better shelter.

A much bigger concern is nuclear contamination. If you choose to leave a poor shelter for a better one, and your clothes (and lungs!) get "dusted" with fallout during your trip, you were probably better off in the poor shelter.

The sort of radiation is also important to understand. Even in a poor shelter, most of the beta radiation will be blocked by even a residential composition roof. True, gamma radiation will pass right through most roofs but be blocked by concrete, but it is generally much less damaging than beta radiation. Again, if you are in a poor shelter that protects you from beta radiation, you may be better off than travelling unprotected to a better shelter, which could even expose you to alpha radiation, the most damaging but the easiest to shield against.

Sooner or later, you'll need to drink water and eat food if you've lived that long. Understanding nuclear contamination is especially crucial at this point, because many of the common fission products (iodine, caesium, strontium) incorporate themselves into human tissue, given the chance, and will continuously irradiate nearby tissue, damaging DNA and causing cancer.

To summarize, I think understanding the local weather and striving to avoid personal contamination are the overriding factors, which probably biases toward a "stay put" survival strategy.
--
So one assumes that even something as simple as a large plastic garbage bag over most of your torso and head (so long as you see to navigate) would help mitigate dusting, is that correct? ... and this assumes you can dispose of it without difficulty or further contamination at your destination.

--

The hard part would be getting the bag off without spreading the contamination.

--

Comment by Dr. Krishna Kumari Challa on January 31, 2014 at 9:53am

How to minimize radiation exposure during a nuclear attack using math:
https://www.sciencenews.org/blog/gory-details/nuclear-attack-there%...
Atmospheric scientist Michael Dillon of Lawrence Livermore National Laboratory in California has developed some helpful rules of thumb. He focused on minimizing total radiation exposure regardless of blast size, wind direction or many other factors that could affect radiation levels. In math terms, you’re minimizing the area under the curve of your radiation exposure over time: the integral, for those who took calculus.
One way to minimize that total exposure is to get to a location that blocks more radiation. The best shelter is belowground — say, in a basement. Hiding in the basement of a large apartment or office building can bring radiation levels down to one two-hundredth of the outdoor dose, a protection factor of 200. Being inside a one-story wooden house, on the other hand, may only cut your exposure in half, a protection factor of 2.
So what to do if you are caught in a poor shelter but think you can get to a better one? Here's where Dillon's math comes in. Essentially, you’re comparing the extra area added to your exposure curve while you’re outdoors with the area you’ll save by spending time in the better shelter later. Radiation levels will be tailing off over time; one rule of thumb is called the 7-10 rule: Seven hours after a blast, you’ll be getting one-tenth the dose received in the first hour.

The most important factors, Dillon found, are how long it has been since the detonation and how long it will take you to get to the better shelter. To minimize the area under your curve, you’re going to want to minimize the ratio of the time you spend in an initial poor-quality shelter to the time you spend outdoors getting to better shelter.
If you have access to only a poor-quality shelter initially (something like a wooden house with no basement) but can get to an adequate shelter (with a protection factor of 10 or more, like the basement of a wooden house) within five minutes, you should ditch the poor shelter immediately and go to the better shelter, Dillon reports January 14 in the Proceedings of the Royal Society A. If it will take you 15 minutes to get to the adequate shelter, you can still reduce your total exposure as long as you make your move within 30 minutes of the detonation. After that, your savings decline along with the outdoor radiation levels.
If you are in or able to immediately enter adequate shelter right after a blast, guidelines say you shoud stay put. You should probably stay in an interior room near the center of the building unless you're confident you can get to that supersafe basement before highly radioactive fallout starts raining down. "if you are outside of the building-collapse area immediately surrounding the detonation, you should have several minutes before fallout arrives." After that, it's unlikely you're going to have enough information to calculate whether your total dosage would be reduced by moving from adequate to better shelter, even if you've memorized the equations.

Once you’re hunkered down, you can generally expect to stay put for at least a couple hours in a minimally adequate shelter before trying to evacuate the area, and 24 hours or more if you're in a good shelter with a protection factor over 100 (again, minimizing your total exposure as outdoor levels fall). That decision can involve a different set of equations, based on wind speed and direction plus a whole host of other variables.

Comment by Dr. Krishna Kumari Challa on January 31, 2014 at 8:39am

Psychotic traits in comedians

Psychologists gave more than 500 funnymen a personality test that assesses traits associated with schizophrenia and bipolar disorder. And they found that the comics score higher than uncreative types, and even higher than actors, on a range of psychotic traits, including fear of intimacy, impulsive behavior, difficulty focusing and a belief in the paranormal.
Results: Comedians scored significantly above O-LIFE norms on all four scales. Actors also differed from the norms but on only three of the scales. Most striking was the comedians' high score on both introverted anhedonia and extraverted impulsiveness.

Conclusions: This unusual personality structure may help to explain the facility for comedic performance.
http://bjp.rcpsych.org/content/early/2014/01/02/bjp.bp.113.134569.a...

Comment by Dr. Krishna Kumari Challa on January 31, 2014 at 8:37am

Observation of Dirac monopoles in a synthetic magnetic field
http://www.nature.com/nature/journal/v505/n7485/full/nature12954.html

Comment by Dr. Krishna Kumari Challa on January 31, 2014 at 8:29am

Acid bath offers easy path to stem cells

Just squeezing or bathing cells in acidic conditions can readily reprogram them into an embryonic state.
In 2006, Japanese researchers reported a technique for creating cells that have the embryonic ability to turn into almost any cell type in the mammalian body — the now-famous induced pluripotent stem (iPS) cells. In papers published this week in Nature, another Japanese team says that it has come up with a surprisingly simple method — exposure to stress, including a low pH — that can make cells that are even more malleable than iPS cells, and do it faster and more efficiently.
Yoshiki Sasai, a stem-cell researcher at the RIKEN Center for Developmental Biology in Kobe, Japan, and a co-author of the latest studies. It took Haruko Obokata, a young stem-cell biologist at the same centre, five years to develop the method and persuade Sasai and others that it works.

Obokata says that the idea that stressing cells might make them pluripotent came to her when she was culturing cells and noticed that some, after being squeezed through a capillary tube, would shrink to a size similar to that of stem cells. She decided to try applying different kinds of stress, including heat, starvation and a high-calcium environment. Three stressors — a bacterial toxin that perforates the cell membrane, exposure to low pH and physical squeezing — were each able to coax the cells to show markers of pluripotency.

But to earn the name pluripotent, the cells had to show that they could turn into all cell types — demonstrated by injecting fluorescently tagged cells into a mouse embryo. If the introduced cells are pluripotent, the glowing cells show up in every tissue of the resultant mouse. This test proved tricky and required a change in strategy. Hundreds of mice made with help from mouse-cloning pioneer Teruhiko Wakayama at the University of Yamanashi, Japan, were only faintly fluorescent. Wakayama, who had initially thought that the project would probably be a “huge effort in vain”, suggested stressing fully differentiated cells from newborn mice instead of those from adult mice. This worked to produce a fully green mouse embryo.

Still, the whole idea was radical, and Obokata’s hope that glowing mice would be enough to win acceptance was optimistic. Her manuscript was rejected multiple times, she says.

To convince sceptics, Obokata had to prove that the pluripotent cells were converted mature cells and not pre-existing pluripotent cells. So she made pluripotent cells by stressing T cells, a type of white blood cell whose maturity is clear from a rearrangement that its genes undergo during development. She also caught the conversion of T cells to pluripotent cells on video. Obokata called the phenomenon stimulus-triggered acquisition of pluripotency (STAP).

Her results suggested a different explanation: that pluripotent cells are created when the body’s cells endure physical stress. “The generation of these cells is essentially Mother Nature’s way of responding to injury,” says Vacanti, a co-author of the latest papers.

http://www.nature.com/news/acid-bath-offers-easy-path-to-stem-cells...

Comment by Dr. Krishna Kumari Challa on January 30, 2014 at 9:58am

Researchers Digitize Neuroscience’s Most Famous Brain

http://www.redorbit.com/news/science/1113057641/amnesiac-brain-digi...

Comment by Dr. Krishna Kumari Challa on January 30, 2014 at 7:15am
Comment by Dr. Krishna Kumari Challa on January 29, 2014 at 6:29am

Bio robots make a splash in the Indian Ocean
(CSIRO)
Robotic floats armed with revolutionary new sensors will be launched in the Indian Ocean, as part of a new India-Australia research partnership to find out what makes the world's third largest ocean tick - and how both nations can benefit from it.

The Indian Ocean contains vast fisheries and mineral resources that are of strategic importance to both Australia and India. It also plays a direct role in driving the climates of its surrounding regions - home to more than 16 per cent of the world's population.

The new 'Bio Argo' floats, to be launched in mid 2014, will enhance the already successful Argo float technology to measure large-scale changes in the chemistry and biology of marine ecosystems below the Indian Ocean's surface.

The Argo floats are a network of 3600 free-floating sensors, operating in open ocean areas that provide real-time data on ocean temperature and salinity.

The 'Bio Argo' floats will include additional sensors for dissolved oxygen, nitrate, chlorophyll, dissolved organic matter, and particle scattering. They will target specific gaps in our understanding of Indian Ocean ecosystems of immediate concern to India and Australia, such as the Bay of Bengal and the waters of north Western Australia.

CSIRO's Dr Nick Hardman-Mountford said the pilot project, led by CSIRO in collaboration with the Indian National Institute of Oceanography (CSIR-NIO) and the Indian National Centre for Ocean Information Services, will improve our understanding of cause and effect in the Indian Ocean's climate and ecosystems.

"By studying the Indian Ocean in this detail, we can investigate the origin and impact of marine heatwaves like the one that devastated the coral reefs and fisheries off north Western Australian in 2011 - and improve our prediction of them in the future," Dr Hardman-Mountford said.

CSIR-NIO Director, Dr Wajih Naqvi, said the novel technological innovation will give researchers from both countries a new understanding of the Indian Ocean.

"We expect the technology being utilised in this project to provide new insights into the biogeochemistry of the Indian Ocean and how it is being impacted by human activities," Dr Naqvi said.

The proposed advances in ocean observation, ecosystem understanding and resources management, which will benefit the entire Indian Ocean Rim, can only occur through collaboration between India and Australia.

Dr Nick D'Adamo, Head of the Perth Programme Office supporting UNESCO's Intergovernmental Oceanographic Commission (IOC) - a partner in the project - praised the collaborative nature of the project.

"By combining the research capabilities of India and Australia we will see an improved ability to predict and prepare for global climate change, as well as better conservation of marine biodiversity," Dr D'Adamo said.

The $1 million project was funded in part by the Australian Government under the Australia-India Strategic Research Fund.

 

Members (22)

 
 
 

Badge

Loading…

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service