Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 2 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 4 hours ago. 10 Replies 0 Likes
The term 'near-death experience', or NDE, refers to a wide array of experiences reported by some people who have nearly died or who have thought they were going to die. It is any experience in which…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Image source: WIKIPEDIACoconut trees are iconic plants found across the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Pathogen transmission can be modeled in three stages. In Stage 1, the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply 0 Likes
Q: Science does not understand energy and the supernatural world because science only studies the material world. Is that why scientists don't believe in magic, manifestation or evil eye? Why flatly…Continue
Comment
Quantum sensing offers an exciting opportunity to probe the world around us in new ways, and holds promise to measure quantities such as magnetic and electric fields or temperature in ways which classical systems could not.
By showing that we can optically detect quantum coherence in molecules at room temperature, this work provides a proof-of-principle that the key properties needed for room-temperature quantum sensing can be achieved in a system which can be chemically synthesized.
Adrian Mena et al, Room-Temperature Optically Detected Coherent Control of Molecular Spins, Physical Review Letters (2024). DOI: 10.1103/PhysRevLett.133.120801
part 2
A breakthrough in quantum technology research could help realize a new generation of precise quantum sensors that can operate at room temperature.
The research—carried out by an international team of researchers shows how the quantum states of molecules can be controlled and sensitively detected under ambient conditions.
The findings could help unlock a new class of quantum sensors which could be used to probe biological systems, novel materials, or electronic devices by measuring magnetic fields with high sensitivity and spatial resolution.
Enabled by using molecules as the quantum sensor, future devices which build on the team's research could measure magnetic fields down to nanometer-length scales in a way which is convenient to deploy.
In a paper, titled "Room-temperature optically detected coherent control of molecular s..." published in the journal Physical Review Letters, the researchers show how they could manipulate a specific quantum property known as 'spin' in organic molecules and measure it with visible light, all at room temperature.
The team used lasers to align the spins of electrons in the molecules, which can be thought of as tiny quantum-mechanical magnets. Using carefully-directed pulses of microwave radiation, they could control these spin states into desired quantum states. They could then measure the state of the spins using the amount of visible light emitted from the molecules from a second laser pulse, which varies according to the quantum state of the spins.
In their proof-of-principle demonstration, the team used an organic molecule called pentacene incorporated in two forms of a material called para-terphenyl, both in crystals and a thin film, which could open new applications in future devices.
The team showed that they could optically detect the quantum coherence—the timescale over which quantum states live—of the molecules for up to a microsecond at room temperature, much longer than the time needed to manipulate the states.
The longer quantum states can be maintained, the more information future sensors could collect about their interactions with the properties they are measuring.
part1
Kleptoparasitism is spreading avian flu
Most seabirds take fish, squid, or other prey from the first few metres of seawater. Scavenging is common.
But there are other tactics. Frigatebirds, skuas, and gulls rely on the success of other seabirds. These large, strong birds chase, harry, and attack their targets until they regurgitate or drop the prey they’ve just caught. They’re the pirates of the seabird world, stealing hard-earned meals from other species. This behaviour is known as kleptoparasitism, from the Ancient Greek word kléptēs, thief.
The strategy is brutal, effective, and a core behaviour for these important seabirds. But as new research shows, it comes with major risks for the thieves. The new strain of avian flu is killing birds by their millions – and researchers found that kleptoparasitism could spread the virus very easily.
https://conbio.onlinelibrary.wiley.com/doi/full/10.1111/conl.13052
Those mesmerizing blue and orange hues in the sky at the start and end of a sunny day might have an essential role in setting humans' internal clocks.
In new research , a novel LED light that emits alternating wavelengths of orange and blue outpaced two other light devices in advancing melatonin levels in a small group of study participants.
Published in the Journal of Biological Rhythms, the finding appears to establish a new benchmark in humans' ability to influence their circadian rhythms, and reflects an effective new approach to counteract seasonal affective disorder (SAD).
Alexandra Neitz et al, Toward an Indoor Lighting Solution for Social Jet Lag, Journal of Biological Rhythms (2024). DOI: 10.1177/07487304241262918
The discovery of a new blood group, MAL, has solved a 50-year-old mystery. Researchers from NHS Blood and Transplant (Bristol), NHSBT's International Blood Group Reference Laboratory (IBGRL) and the University of Bristol identified the genetic background of the previously known but mysterious AnWj blood group antigen. The findings allow identification and treatment of rare patients lacking this blood group.
Some people can lack this blood group due to the effect of illness, but the rare inherited form of the AnWj-negative phenotype has only been found in a handful of individuals—though due to this discovery it will now be easier to find others in the future.
The two best known blood group systems are ABO and Rh but blood is more complex, and matching across the other groups can be lifesaving.
If people who are AnWj-negative receive AnWj-positive blood they could have a transfusion reaction, and this research allows development of new genotyping tests for detecting such rare individuals and reducing the risk of transfusion-associated complications.
The AnWj antigen—an antigen is a surface marker—was discovered in 1972 but its genetic background was unknown until now. The new research, published in Blood, establishes a new blood group system (MAL), the 47th ever to be discovered, as home to the AnWj antigen.
The research team established that AnWj is carried on the Mal protein. More than 99.9% of people are AnWj-positive, and such individuals were shown to express full-length Mal protein on their red cells, which was not present on the cells of AnWj-negative individuals. The team identified homozygous deletions in the MAL gene associated with the inherited AnWj-negative phenotype.
The most common reason for being AnWj-negative is due to suffering from a hematological disorder or some types of cancer which suppress antigen expression. Only a very small number of people are AnWj-negative due to a genetic cause. There were five genetically AnWj negative individuals in the study including a family of Arab-Israelis. The blood tested included a sample given by a lady in 2015 who was the first AnWj negative person to be discovered in the 1970s.
The research team used whole exome sequencing—the genetic sequencing of all DNA that encodes proteins—to show that these rare inherited cases were caused by homozygous DNA sequence deletions in the MAL gene, which codes for Mal protein.
Proof that Mal is responsible for binding of AnWj antibodies isolated from these rare patients was provided by experiments showing the appearance of specific reactivity with cells in which researchers introduced the normal MAL gene but not the mutant gene.
Louise A Tilley et al, Deletions in the MAL gene result in loss of Mal protein, defining the rare inherited AnWj-negative blood group phenotype, Blood (2024). DOI: 10.1182/blood.2024025099.
This allowed them to explain much better how our brain enables us to perceive the objects in our environment and understand their meaning.
The researchers looked at the data of three study participants whose brain activity was measured in the MRI scanner over 15 sessions while they looked at more than 8,000 different images of 720 objects.
When the participants saw a rocket, for example, the researchers were able to measure from the brain activity that their visual system not only recognized that it was a rocket or that a rocket is a vehicle, but also that it is gray and elongated, has to do with fire, can fly, or sparkles.
All processing stages of our perceptual system are therefore involved in capturing a broad spectrum of behaviorally relevant properties that together make up our perception, say the researchers.
This work reveals a multidimensional framework that is consistent with the rich and diverse behavioral relevance of objects. This ultimately explains our broad range of human behaviors better than the categorization-focused approach, and this in turn is crucial for understanding how we perceive and interact with our visual world in a meaningful way.
Oliver Contier et al, Distributed representations of behaviour-derived object dimensions in the human visual system, Nature Human Behaviour (2024). DOI: 10.1038/s41562-024-01980-y
Part 2
**
Until now the dominant view has been that a central goal of human perception is to recognize objects and assign them to different categories—for example, this observed object is a dog and dogs belong to the category of animals.
But researchers have now shown that this view is incomplete.
In a recent study published in the journal Nature Human Behaviour, they demonstrate that brain activity when seeing objects can be much better explained by a variety of behaviorally relevant dimensions.
Until now, it was thought that our brain's visual system breaks down the objects we see into very basic features and then gradually reassembles them with the aim of enabling their recognition.
The research results have shown that recognition and categorization are important goals of our vision, but by no means the only ones.
In fact, the researchers found behaviorally relevant signals at all processing stages in the visual system. they were able to show this based on the behaviorally relevant dimensions they had previously discovered.
The researchers used a computer model to identify 66 object dimensions from behavioral data of more than 12,000 study participants. These dimensions not only explain categorization, i.e., whether a dog is an animal, but also cover other characteristics, such as colors and shapes, as well as gradual values, for example, how typical a dog is of an animal.
Part 1
More than 39 million people around the world could die from antibiotic-resistant infections over the next 25 years, according to a study published in The Lancet.
The new study by the Global Research on Antimicrobial Resistance (GRAM) Project is the first global analysis of antimicrobial resistance (AMR) trends over time.
It reveals that more than one million people died each year as a result of AMR between 1990 and 2021. The study also estimates 1.91 million people could potentially die as a direct result of AMR in 2050, an increase of almost 70% per year compared to 2022. Over the same period, the number of deaths in which AMR bacteria play a role will increase by almost 75% from 4.71 million to 8.22 million per year.
Between 1990 and 2021, AMR deaths among children under five years old declined by 50%, while those among people aged 70 years and older increased by more than 80%. These trends are predicted to continue in the coming decades, with AMR deaths among children under five projected to halve by 2050 globally, as deaths among people 70 years and older more than double.
The findings highlight a vital need for interventions that incorporate infection prevention, vaccination, minimizing inappropriate antibiotic use, and research into new antibiotics to mitigate the number of AMR deaths that are forecasted for 2050.
Antimicrobial medicines are one of the cornerstones of modern health care, and increasing resistance to them is a major cause for concern. These findings highlight that AMR has been a significant global health threat for decades and that this threat is growing. Understanding how trends in AMR deaths have changed over time, and how they are likely to shift in future, is vital to make informed decisions to help save lives, say the authors of the study.
Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050, The Lancet (2024). DOI: 10.1016/S0140-6736(24)01867-1
If you care about the environment, think twice about using AI. Generative artificial intelligence uses 30 times more energy than a traditional search engine, warn researchers.
The language models on which the programs are based require enormous computing capacities to train on billions of data points, necessitating powerful servers.
Then there's the energy used to respond to each individual user's requests.
Instead of simply extracting information, "like a search engine would do to find the capital of a country, for example," AI programs "generate new information," making the whole thing "much more energy-intensive," they explain.
According to the International Energy Agency, the combined AI and the cryptocurrency sectors consumed nearly 460 terawatt hours of electricity in 2022—two percent of total global production.
Although Microsoft and Google have committed to achieving carbon neutrality by the end of the decade, the US tech giants saw their greenhouse gas emissions soar in 2023 because of AI: up 48 percent for Google compared to 2019 and 29 percent for Microsoft compared to 2020.
"We are accelerating the climate crisis," say the experts, calling for more transparency from tech companies.
The solution, they say, could come from governments that, for the moment, are "flying blindly," without knowing what is "in the data sets or how the algorithms are trained."
"Once we have transparency, we can start legislating".
It is also necessary to explain to people what generative AI can and cannot do, and at what cost.
The researchers demonstrated that producing a high-definition image using artificial intelligence consumes as much energy as fully recharging the battery of your cell phone.
The idea here is not to oppose AI, they emphasize, but rather to choose the right tools—and use them judiciously.
Source: AFP and other news agencies
When surgeons perform brain surgery on people with brain tumors or epilepsy, they need to remove the tumor or abnormal tissue while preserving parts of the brain that control language and movement.
A new Medicine study may better inform doctors' decisions about which brain areas to preserve, thereby improving patients' language function after brain surgery. The study expands the understanding of how language is encoded in the brain and identifies key features of critical sites in the cerebral cortex that work together to produce language.
If you think of the brain's language network as a social network, scientists have essentially found the person who is the link between lots of subnetworks of people. They wouldn't know each other if not for this single person. In the brain, these "connectors" serve the same function for language. If the connector sites were removed, the patient would make more language errors after surgery—such as difficulty naming objects—because the subnetworks couldn't work together.
https://news.northwestern.edu/stories/2024/september/vital-language...
https://www.nature.com/articles/s41467-024-51839-zNature Communications (2024).
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!