Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 6 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 3 Replies 0 Likes
Q: Dr.Krishna, I have read your article on Nocebo Effect. But what…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Q: Why do many scientists dismiss ancient Indian knowledge without examination? Does this stem from ego, cultural bias, or fear of inner truth?Krishna: I object to the words “without examination”. No…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa May 15. 1 Reply 0 Likes
Q: What are kinetic and non kinetic responses during warfare?Krishna: I think people are asking these questions because these things caught their imagination as these words were used during media…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa May 15. 1 Reply 0 Likes
Q: I read in some news reports that Pakistan imported Boron from Egypt after India's attack on its military installations? Some are speculating that its nuclear storage sites were hit. In what way…Continue
Comment
Climate justice broadly encompasses recognition that (1) climate change impacts are unequally felt across society; (2) the worst affected groups often have the least say in the selection and implementation of societal responses to climate change, and (3) climate change-related policymaking processes often fail to recognize the legitimate interests of politically voiceless communities, consequently contributing to further disenfranchisement of marginalized groups. It is a framework that enables those involved in policymaking to identify and tackle the multiple different ways in which the climate crisis intersects with longstanding patterns of social injustice.
An alarming discovery by researchers raises concerns for bumblebee health, survival and reproduction. U of G environmental sciences researchers have found that bumblebee queens are more likely to hibernate in soil contaminated with pesticides than in clean soil—for reasons they still don't quite understand.
The team conducted field experiments in which newly emerged queens of the common eastern bumblebee (Bombus impatiens) were left to fly freely in outdoor enclosures, mate and then choose a site in which to hibernate for the winter.
The choice was between clean soil or soil contaminated with one of five common pesticides, including insecticides and fungicides, across different concentrations.
The School of Environmental Sciences researchers then carefully searched through the soils for hibernating bumblebee queens. They found queens avoided the pesticide-free soil and, in fact, were about twice as likely to be drawn to the pesticide-contaminated soil.
Most bees in the study survived, but other consequences for the colony are highlighted in the study, published in Science of the Total Environment.
"This raises serious concerns for bumblebee health," say the researchers, "especially as this group of important insect pollinators already face many challenges.
Bumblebee queens typically hibernate underground during winter before emerging in spring to start new colonies. Researchers wanted to investigate how bees respond to contaminants at this key but vulnerable life stage.
Previous studies showed that pesticides on crops can either attract or repel bees, depending on the type, the environmental situation and the concentration used.
One possible explanation is that pesticides altered the soil properties and made it more appealing to the queens.
For example, the fungicides used in the study could have killed soil fungi and nematodes, and queens might avoid soils with fungi because they can be harmful during hibernation.
Another possibility is that the queens could have developed an "acquired taste" for pesticides, as researchers put it, due to prior exposure in their environment.
They might also be looking for something new, as novelty-seeking behavior is common for bees and often leads the colony to discover new resources.
More research is needed to fully understand the mechanisms behind this unexpected queen behaviour. But the findings suggest the need to reconsider how pesticides are used and managed in agricultural settings as exposure to pesticides is contributing to a worldwide decline of insects.
Sabrina Rondeau et al, Bumblebee (Bombus impatiens) queens prefer pesticide-contaminated soils when selecting underground hibernation sites, Science of The Total Environment (2024). DOI: 10.1016/j.scitotenv.2024.176534
Different types of fears activate different parts of the brain.
For a long time, people assumed that the responses to all fearful scenarios occurred similarly within the brain.
There's this story that we've had in the literature that the brain regions that predict fear are things like the amygdala, or the orbital frontal cortex area, or the brainstem. Those are thought to be part of a so-called 'fear circuit' that's been a very dominant model in neuroscience for decades.
In early October 2024, researchers released new research that undermines that persistent model. In a study published in The Journal of Neuroscience the researchers used MRI scans to observe brain activity when confronted with three distinctive scenarios meant to evoke different types of fear: fear of heights, fear of spiders, and fear of "social threats" (public speaking, confrontations with police).
And contrary to the prevailing scientific wisdom, the neural response to each type of scenario activated different areas of the brain—rather than following a single pattern.
Although based on a small sample size, the study revealed two things: fear responses happened across a wider range of brain regions than expected. But not all brain regions responded across all three situations.
The amygdala, for instance, seemed to carry information that predicted fear during the heights context, but not some of the other contexts. The so-called 'classic threat areas' involved in being predictive of fear across situations are not seen here.
When scientists look at the brain and the neural correlates of fear, part of the reason they want to understand is so they can intervene on it. Their new findings suggest the interventions might also need to be tailored to the person and situation.
This could now affect behaviour-based therapies, but also, much further down the line, pharmacological ones.
Yiyu Wang et al, Neural predictors of fear depend on the situation, The Journal of Neuroscience (2024). DOI: 10.1523/JNEUROSCI.0142-23.2024
According to a 2024 medical case report, a breakdancer who'd been performing for 19 years was treated for "headspin hole", a condition also known as "breakdancer bulge" that's unique to breakdancers. It entails a cone shaped mass developing on top of the scalp after repetitive head-spinning. Additional symptoms can include hair loss and sometimes pain around the lump.
Approximately 30% of breakdancers report hair loss and inflammation of their scalp from head-spinning. A headspin hole is caused by the body trying to protect itself. The repeated trauma from head-spinning causes the epicranial aponeurosis—a layer of connective tissue similar to a tendon, running from the back of your head to the front—to thicken along with the layer of fat under the skin on top of the head in an attempt to protect the bones of skull from injury. The body causes a similar protective reaction to friction on the hands and feet, where callouses form to spread the pressure and protect the underlying tissues from damage. Everyday repetitive activities from holding smartphones or heavy weights through to poorly fitting shoes can result in callouses.
But a cone-shaped head isn't the only injury to which breakdancers are prone, however. Common issues can include wrist, knee, hip, ankle, foot and elbow injuries, and moves such as the "windmill" and the "backspin" can cause bursitis—inflammation of the fluid filled sacs that protect the vertebrae of the spine. A headspin hole isn't the worst injury you could sustain from breakdancing either. One dancer broke their neck but thankfully they were lucky enough not to have any major complications.
Water crisis threatening world food production: report
Inaction on the water crisis could put more than half of the world's food production at risk by 2050, experts warned in a major report published this week.
Nearly 3 billion people and more than half of the world's food production are now in areas where total water storage is projected to decline," said the report by the Global Commission on the Economics of Water (GCEW).
The report also warned the water crisis could lead to an eight percent drop in GDP on average for high-income countries by 2050 and as much as 15 percent for lower-income countries.
Disruptions of the water cycle "have major global economic impacts," said the report.
The economic declines would be a consequence of "the combined effects of changing precipitation patterns and rising temperatures due to climate change, together with declining total water storage and lack of access to clean water and sanitation".
Facing this crisis, the report called for the water cycle to be viewed as a "global common good" and for a transformation of water governance at all levels.
"The costs entailed in these actions are very small in comparison to the harm that continued inaction will inflict on economies and humanity," it said.
While water is often perceived as "an abundant gift of nature", the report stressed it was scarce and costly to transport.
It called for the elimination of "harmful subsidies in water-intensive sectors or redirecting them towards water-saving solutions and providing targeted support for the poor and vulnerable".
Source: News agencies
Researchers found 10 'target' PFAS (perfluoroalkyl substances)—chemicals which do not break down in nature—in tap and bottled water available for consumption in major cities.
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were detected in over 99% of samples of bottled water sourced from 15 countries around the world.
However, the study demonstrates that measures such as boiling and/or activated carbon filtration—typically using a 'jug' water filter—can substantially reduce PFAS concentrations in drinking water, with removal rates ranging from 50% to 90% depending on the PFAS and treatment type.
Publishing their findings in ACS ES&T Water, researchers reveal a wide range of PFAS contamination for target PFAS, starting at 63% of bottled waters tested.
These findings highlight the widespread presence of PFAS in drinking water and the effectiveness of simple treatment methods to reduce their levels. Either using a simple water filtration jug or boiling the water removes a substantial proportion of these substances.
Chuanzi Gao et al, Factors Influencing Concentrations of PFAS in Drinking Water: Implications for Human Exposure, ACS ES&T Water (2024). DOI: 10.1021/acsestwater.4c00533
In an era where viral outbreaks can escalate into global pandemics with alarming speed, the ability to quickly develop new vaccines has become crucial. However, the speed of vaccine production is limited because the mRNA used in it is partly chemically synthesized and partly synthesized using enzymes, a relatively slow process.
A team of researchers has successfully developed an innovative synthesis technology capable of producing high purity, fully chemically-synthesized mRNA, cutting out the slower enzyme reactions.
This advancement establishes a foundation for more rapid reactions to viral outbreaks and emerging diseases, which will hopefully lead to mitigation of future infections at a preliminary stage. Their results were published in the journal Nucleic Acids Research.
Given its significant role in combating the COVID-19 pandemic, mRNA is now widely recognized for its potential to help prevent infectious diseases. Experts anticipate that in the future mRNA technology will be used to treat genetic disorders and emerging illnesses. However, producing mRNA remains challenging because of concerns about purity and production speed.
These problems can be addressed using fully chemically-synthesized mRNA.
One of the most significant advantages of fully chemically-synthesized mRNA is its ability to bypass the complex and time-consuming enzymatic reactions typically required in mRNA production. A method that relies purely on chemical reactions would significantly shorten the production process.
It also offers benefits to people that have strong immune responses to vaccines. mRNA that is derived from 5'-monophosphorylated RNA is susceptible to contamination by incomplete RNA fragments, causing a strong immune reaction. This immune response increases the risk of side effects, particularly inflammation. However, existing purification technologies have struggled to remove these impurities, limiting its potential.
So researchers now devised a novel phosphorylation reagent with a nitrobenzyl group that serves as a hydrophobic purification tag.
"Nitrobenzyl groups have high hydrophobicity; therefore, when the nitrobenzyl group is introduced into the RNA molecule, the mRNA becomes more hydrophobic. As impure RNA lacks nitrobenzyl groups, it can be easily separated from the target RNA containing nitrobenzyl groups using reverse-phase high-performance liquid chromatography.
"This approach yields pure RNA, free from length inconsistencies and impurities typically associated with transcription-based synthesis methods."
Besides fully synthesizing mRNA chemically, the team also created pure circular mRNA using the same method. Circular mRNAs are unique because they lack terminal structures, making them resistant to degradation by nucleic acid-degrading enzymes in the body, resulting in a longer-lasting medicinal effect.
The breakthrough in mRNA production has significant implications for the future of medical treatments.
Mami Ototake et al, Development of hydrophobic tag purifying monophosphorylated RNA for chemical synthesis of capped mRNA and enzymatic synthesis of circular mRNA, Nucleic Acids Research (2024). DOI: 10.1093/nar/gkae847
The team identified 11 unique, previously uncharacterized strains of Micrococcus luteus, typically non-pathogenic but capable of causing opportunistic infections in immunocompromised individuals.
"The issue of their adaptation to our behavior becomes particularly critical in clinical settings where hospitals serve as hotspots for diverse pathogens that cause hospital-acquired infections (HAIs). HAIs pose a significant threat, particularly in intensive care units where mortality rates can reach up to 30%.
The researchers also characterized two novel strains of Patescibacteria, known as "nanobacteria", as they have tiny genomes that do not contain many genes for producing their own resources.
Some strains of Patescibacteria are considered parasitic as they rely on bacterial hosts to supply their nutrients. However, in this study, the researchers found that one of the nanobacteria strains, recovered from human skin, contains genes for the biosynthesis of carotenoids and ubiquinone.
These antioxidant compounds are vital to humans, and we typically acquire them, especially carotenoids, through our diets, suggesting a possible mutualistic relationship between bacteria and us as their hosts.
This enhanced understanding of microbial metabolic functions within built environments helps develop strategies to create a healthy indoor ecosystem of microbes for us to live alongside.
--
The team is now investigating the transmission and evolution of resistance in pathogenic microbes in intensive care units that are exposed to stringent and extensive disinfectant practices. They hope to improve infection control practices and increase the safety of clinical environments for health care workers and patients.
Xinzhao Tong, et al. Diverse and specialized metabolic capabilities of microbes in oligotrophic built environments. Microbiome (2024) DOI: 10.1186/s40168-024-01926-6
Part 2
New research shows microbes in our cities are evolving to resist the very cleaners we use to eliminate them.
After the recent pandemic, the use of disinfectants has increased, but are efforts to create sterile urban environments backfiring?
A study published in the journal Microbiome has identified novel strains of microbes that have adapted to use the limited resources available in cities and shown that our everyday behavior is changing the makeup of microorganisms in indoor environments.
Built environments offer distinct conditions that set them apart from natural and engineered habitats.
Areas with many buildings are low in the traditional nutrients and essential resources microbes need for survival, so these built environments have a unique microbiome.
Our use of cleaning and other manufactured products creates a unique setting that puts selective pressures on microbes, which they must adapt to or be eliminated.
The researchers collected 738 samples from a variety of built environments, including subways, residences, public facilities, piers and human skin in Hong Kong. They then used shotgun metagenomic sequencing to analyze the microbes' genomic content and understand how they have adapted to the challenging urban conditions.
The team identified 363 microbial strains that have not been previously identified that live on the skin and the surrounding environment. Some of these strains' genomes contained genes for metabolizing manufactured products found in cities and using them as carbon and energy sources. This includes the discovery of a strain of Candidatus phylum Eremiobacterota, previously only reported in Antarctic desert soil.
The genome of this novel strain of Eremiobacterota enables it to metabolize ammonium ions found in cleaning products. The strain also has genes for alcohol and aldehyde dehydrogenases to break down residual alcohol found in common disinfectants.
"Microbes possessing enhanced capabilities to utilize limited resources and tolerate manufactured products, such as disinfectants and metals, out-compete non-resistant strains, enhancing their survival and even evolution within built environments. They could, therefore, pose health risks if they are pathogenic.
Part 1
Pediatric patients aged 10 to 19 years old diagnosed with COVID-19 have a higher risk of new-onset type 2 diabetes within six months compared to those diagnosed with other respiratory infections, according to researchers.
The research is a follow-up of meta-data analysis showing an increased risk of type 2 diabetes in adults. The meta-analysis revealed a 66% higher average risk of new-onset diabetes after SARS-CoV-2 infection in adults. In the current retrospective study, "SARS-CoV-2 Infection and New-Onset Type 2 Diabetes Among Pediatric Patients, 2020 to 2022," published in JAMA Network Open, researchers looked to see if a similar pattern existed in children.
The study analyzed a cohort of 613,602 pediatric patients aged 10 to 19 years. After propensity score matching, this cohort was divided equally into two groups: 306,801 patients diagnosed with COVID-19 and 306,801 patients diagnosed with other respiratory infections (ORI).
A subset of the cohort with obesity and COVID or ORI was also analyzed, with two groupings of 16,469 patients.
The research compared the incidence of new type 2 diabetes diagnoses at one, three, and six months after the initial respiratory infection. The risk ratios (RR) for developing type 2 diabetes after COVID-19 were found to be significantly higher than for those with ORI.
Specifically, the RR was 1.55 (95% CI, 1.28–1.89) at one month, 1.48 (95% CI, 1.24–1.76) at three months, and 1.58 (95% CI, 1.35–1.85) at six months post-infection.
The smaller subgroup analyses revealed even greater elevated risks among children classified as overweight, with RRs of 2.07 at one month, 2.00 at three months, and 2.27 at six months. Hospitalized patients also showed increased risks, with RRs of 3.10 at one month, 2.74 at three months, and 2.62 at six months after COVID-19 diagnosis.
The study concluded that SARS-CoV-2 infection is associated with a higher incidence of type 2 diabetes diagnoses in children than those with other respiratory infections. Further research is necessary to determine whether the diabetes persists or is a recoverable condition that reverses later in life.
Margaret G. Miller et al, SARS-CoV-2 Infection and New-Onset Type 2 Diabetes Among Pediatric Patients, 2020 to 2022, JAMA Network Open (2024). DOI: 10.1001/jamanetworkopen.2024.39444
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!