Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 2 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 2 hours ago. 1 Reply 0 Likes
Q: Why do people say you can't trust science because it changes, and how does that contrast with religious beliefs?Krishna: “Because it changes” - if you don’t understand why the changes occur, you…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
Maternal gut microbiome composition may be linked to preterm birthsPeople associate several things regarding pregnancy to eclipses and other natural phenomenon. They also associate them with papaya…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Playwright Tom Stoppard, in "Rosencrantz and Guildenstern are Dead," provides one of the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 6. 1 Reply 0 Likes
Q: Why do some people find comfort in the idea of being "recycled" into nature rather than believing in an afterlife?Krishna: Because ‘"recycled" into nature’ is an evidence based fact and people…Continue
Comment
The explanation lies in quantum mechanics, where particles like photons behave in fuzzy, probabilistic ways rather than following strict rules.
Instead of adhering to a fixed timeline for absorption and re-emission, these interactions occur across a spectrum of possible durations—some of which defy everyday intuition.
Critically, the researchers say, this doesn't violate Einstein's theory of special relativity, which dictates that nothing can travel faster than light. These photons carried no information, sidestepping any cosmic speed limits.
The concept of "negative time" has drawn both fascination and skepticism, particularly from prominent voices in the scientific community.
German theoretical physicist Sabine Hossenfelder, for one, criticized the work in a YouTube video viewed by over 250,000 people, noting, "The negative time in this experiment has nothing to do with the passage of time—it's just a way to describe how photons travel through a medium and how their phases shift."
Angulo and Steinberg, the researchers who did this work, pushed back, arguing that their research addresses crucial gaps in understanding why light doesn't always travel at a constant speed.
Steinberg acknowledged the controversy surrounding their paper's provocative headline but pointed out that no serious scientist has challenged the experimental results.
"We've made our choice about what we think is a fruitful way to describe the results," he said, adding that while practical applications remain elusive, the findings open new avenues for exploring quantum phenomena.
"I'll be honest, I don't currently have a path from what we've been looking at toward applications," he admitted. "We're going to keep thinking about it, but I don't want to get people's hopes up."
Daniela Angulo et al, Experimental evidence that a photon can spend a negative amount of time in an atom cloud, arXiv (2024). DOI: 10.48550/arxiv.2409.03680 , arxiv.org/abs/2409.03680
Part 2
**
Scientists have long known that light can sometimes appear to exit a material before entering it—an effect dismissed as an illusion caused by how waves are distorted by matter.
Now, researchers through innovative quantum experiments, say they have demonstrated that "negative time" isn't just a theoretical idea—it exists in a tangible, physical sense, deserving closer scrutiny.
The findings, posted on the preprint server arXiv but not yet published in a peer-reviewed journal, have attracted both global attention and skepticism.
The researchers emphasize that these perplexing results highlight a peculiar quirk of quantum mechanics rather than a radical shift in our understanding of time.
While the term "negative time" might sound like a concept lifted from science fiction, some physicists defend its use, hoping it will spark deeper discussions about the mysteries of quantum physics.
Years ago, the research team began exploring interactions between light and matter.
When light particles, or photons, pass through atoms, some are absorbed by the atoms and later re-emitted. This interaction changes the atoms, temporarily putting them in a higher-energy or "excited" state before they return to normal.
The team now set out to measure how long these atoms stayed in their excited state. "That time turned out to be negative" —meaning a duration less than zero.
Part 1
Antarctica is approaching a series of cascading tipping points that could reshape ecosystems and intensify global climate disruptions, according to a new study by an international team of scientists.
The study identifies eight potential tipping points spanning physical, biological, chemical, and governance systems. The research is published in the journal Ambio.
These include collapsing ice sheets, invasive species, ocean acidification, and pressures on the Antarctic Treaty System (ATS), which oversees human activity in the region.
The findings highlight the region's critical role in global climate stability.
Antarctica's ice sheets are vital to regulating the Earth's climate and oceans. If they collapse, we'll see significant sea-level rise, impacting millions of people living in coastal areas.
The study warns that these tipping points are interconnected, creating a risk of cascading effects. Melting ice sheets, for example, not only contribute to sea-level rise but also disrupt ocean circulation, which is crucial for transporting heat, carbon, and nutrients around the globe. Such disruptions threaten marine ecosystems, global fisheries, and food security.
The Antarctic Treaty System has been a cornerstone in preserving this fragile environment. But it's increasingly under pressure from geopolitical tensions and expanding human activity. Strengthening it is critical to mitigating these cascading impacts.
Ida Kubiszewski et al, Cascading tipping points of Antarctica and the Southern Ocean, Ambio (2024). DOI: 10.1007/s13280-024-02101-9
If our findings here are validated in future studies of independent study populations, mechanistic studies would be needed to disentangle the role of human tonsils and their diseases, via inflammation or other associated health conditions, in the development of psychiatric disorders in general and stress-related disorders specifically," write the researchers.
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2827613
Part 2
**
Thousands of children around the world have their tonsils surgically removed each year to improve breathing while sleeping or reduce recurrent infection.
A study by an international team of researchers now suggests this relatively common procedure could increase a patient's risk of developing an anxiety-related disorder later in life.
Scientists analyzed data on over a million people held in a Swedish health registry, finding that a tonsillectomy was linked to a 43 percent increased risk of developing conditions such as post-traumatic stress disorder (PTSD), depression, or anxiety.
Being an observational study, the research can't determine the cause of this outcome, however the increased risk was present even after accounting for the sex of the participants, the age at which they had their tonsils out, any family history of stress-related disorders, and the education level of the parents (an indicator of socioeconomic status).
These findings suggest a potential role of adenotonsillar diseases or associated health conditions in the development of stress-related disorders, the researchers write in their published paper.
Of the conditions identified, PTSD presented the greatest risk increase; a rise of some 55 percent was shown for those who had tonsillectomies earlier in life, compared with those who hadn't.
The researchers compared siblings in some families to control for certain genetic and environmental factors. Even among this sample there was a 34 percent greater risk of anxiety disorders for those family members who had their tonsils removed.
Being a nationwide study with a large sample size, the results provide credible evidence for some kind of link between the surgery and declines in mental health. But what's behind the association?
While we can live without our tonsils, they do help to fight infection, so our bodies are more vulnerable without them. It's also possible that in some cases the reason for the tonsillectomy – like persistent inflammation – might also be the reason for the anxieties later in life.
Previous studies have linked the removal of the tonsils to increases in other health problems, including autoimmune diseases and cancer – and we now have another important consideration to weigh up.
Part 1
Do you know why I never use these tea bags? Because my instinct told me they don't have good vibes! And I am right!
Research has characterized in detail how polymer-based commercial tea bags release millions of nanoplastics and microplastics when infused. The study shows for the first time the capacity of these particles to be absorbed by human intestinal cells, and are thus able to reach the bloodstream and spread throughout the body.
Plastic waste pollution represents a critical environmental challenge with increasing implications for the well-being and health of future generations. Food packaging is a major source of micro and nanoplastic (MNPLs) contamination and inhalation and ingestion is the main route of human exposure.
A study by the Mutagenesis Group of the UAB Department of Genetics and Microbiology has successfully obtained and characterized micro and nanoplastics derived from several types of commercially available tea bags. The paper is published in the journal Chemosphere.
The researchers observed that when these tea bags are used to prepare an infusion, huge amounts of nano-sized particles and nanofilamentous structures are released, which is an important source of exposure to MNPLs.
The tea bags used for the research were made from the polymers nylon-6, polypropylene and cellulose. The study shows that, when brewing tea, polypropylene releases approximately 1.2 billion particles per milliliter, with an average size of 136.7 nanometers; cellulose releases about 135 million particles per milliliter, with an average size of 244 nanometers; while nylon-6 releases 8.18 million particles per milliliter, with an average size of 138.4 nanometers.
To characterize the different types of particles present in the infusion, a set of advanced analytical techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-FTIR), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and nanoparticle tracking analysis (NTA) were used.
Interactions with human cells observed for the first time.
The particles were stained and exposed for the first time to different types of human intestinal cells to assess their interaction and possible cellular internalization. The biological interaction experiments showed that mucus-producing intestinal cells had the highest uptake of micro and nanoplastics, with the particles even entering the cell nucleus that houses the genetic material.
The result suggests a key role for intestinal mucus in the uptake of these pollutant particles and underscores the need for further research into the effects that chronic exposure can have on human health.
As the use of plastic in food packaging continues to increase, it is vital to address MNPLs contamination to ensure food safety and protect public health, the researchers add.
Gooya Banaei et al, Teabag-derived micro/nanoplastics (true-to-life MNPLs) as a surrogate for real-life exposure scenarios, Chemosphere (2024). DOI: 10.1016/j.chemosphere.2024.143736
To steer organizer cells and control stem cell development, the scientists uploaded genetic codes into the cells and engineered two key features in the cells.
First, they instructed the cells to stick to the stem cells in the form of a node or a shell clustering around the clump of stem cells. Second, the investigators engineered the organizer cells to produce specific biochemical signals crucial to inducing early embryonic development.
To effectively and precisely control the organizer cells, researchers developed a chemical switch within the cells, allowing scientists to turn the delivery of instructions to stem cells on or off. Additionally, they installed a "suicide" switch to eliminate the organizer cells when needed.
These synthetic organizers show that we can provide more refined developmental instructions to stem cells by engineering where and when specific morphogen signals are provided.
The organizer cells carry both spatial information and biochemical information, thus giving us an incredible amount of control that we have not had before.
The use of engineered synthetic organizer cells could ultimately allow the team to build real-world applications in the future. The remarkable science of programming instructions to coax stem cells could one day open the door to tackle complex diseases.
Toshimichi Yamada et al, Synthetic organizer cells guide development via spatial and biochemical instructions, Cell (2024). DOI: 10.1016/j.cell.2024.11.017
Part 2
Investigators have identified a new way to deliver instructions that tell stem cells to grow into specific bodily structures, a critical step in eventually regenerating and repairing tissues and organs.
The scientists engineered cells that form structures called "synthetic organizers." These organizers provided instructions to the stem cells through biochemical signals called morphogens, which stimulated and enabled the stem cells to grow into specific complex tissues and organ-like assemblies.
The research was conducted with mouse embryonic stem cells, and the findings were published in Cell.
Scientists now can use these synthetic organizers to push the stem cells toward making different parts of the early embryo or toward making a heart or other organs.
In one instance, scientists were able to induce the stem cells to begin to form a mouse body that stretched from head to tail, similar to regular embryonic development in the womb. In another instance, the scientists were able to spur the stem cells to generate a large heart-like structure complete with a central chamber and a regular beat, along with a network of early blood vessels.
This type of synthetic organizer cell platform provides a new way to interface with stem cells and to program what they develop into.
By controlling and reshaping how stem cells differentiate and develop, it might allow us to grow better organs for transplantation or organoids for disease modeling and eventually utilize it to drive tissue regeneration in living patients.
Part 1
Scientists have discovered a way to remove toxic compounds from potatoes, making them safer to eat and easier to store. The breakthrough could cut food waste and enhance crop farming in space and other extreme environments.
Potato plants naturally produce chemicals that protect them from insects. The chemicals, called steroidal glycoalkaloids, or SGAs, are found in high quantities in the green parts of potato peels, and in the sprouting areas. They render the potatoes unsafe for insects as well as humans.
These compounds are critical for plants to ward off insects, but they make certain parts of these crops inedible.
Now that scientists have uncovered the biosynthetic pathway, they can potentially create plants that produce these compounds only in the leaves while keeping the edible parts safe.
Sunlight can induce the production of SGAs in potato "tubers"—the part of the potato plant that is eaten—even after they've been harvested. By identifying a key genetic mechanism in SGA production, researchers may be able to reduce potatoes' toxicity while preserving the plants' natural defenses. Taking SGA out of potatoes will also make them easier to store and transport in open air.
The research, published in Science, focuses on a protein dubbed "GAME15," which plays a key role in directing the plant's production of SGAs. This protein acts both as an enzyme and a scaffold, organizing other enzymes into a "conversion factory" that efficiently produces SGAs while preventing toxic compounds from leaking into other parts of plant cells, where they would wreak havoc.
Tomatoes also produce SGAs, primarily in the green, unripe fruit, as well as in the leaves, stems, and roots of the plants. When the researchers silenced the GAME15 gene in tomatoes, they eliminated SGA production but also made the plants highly susceptible to pests.
By engineering plants to control when and where SGAs are produced, for example, in the leaves but not the potatoes themselves, the researchers envision crops that can be stored without the risk of toxicity from sunlight exposure.
The team achieved these insights by initially recreating the SGA production process in tobacco plants. Surprisingly, they found that during evolution, the process redirected protein from the plasma membrane or Golgi apparatus, where it is responsible for the production of cell wall components crucial for cell growth, to the endoplasmic reticulum, a part of the cell where toxin production begins.
Green, unripe fruit may be toxic, but during ripening these molecules convert to something edible. By limiting SGAs to non-edible parts of plants, farmers and consumers alike could benefit from safer, more versatile crops.
This work demonstrates that plants have evolved ingenious ways to balance growth, reproduction, and defense. Understanding these systems allows us to redesign crops to meet modern needs without compromising their ability to thrive.
Adam Jozwiak et al, A cellulose synthase–like protein governs the biosynthesis of Solanum alkaloids, Science (2024). DOI: 10.1126/science.adq5721
Nine species of sea snakes have now been identified as having regained the genetic requirements for advanced color vision, demonstrating that once a complex trait has been lost to evolutionary time, it may be regained in some way.
A new study found the genetic trait may have existed in a common ancestor of the nine species, which all belong to the Hydrophis genus, dating back three million years.
Researchers previously identified one species of sea snake that had re-elaborated the visual function—the fully marine Hydrophis cyanocinctus, which did so in response to its spectrally complex environment.
With the re-elaboration now identified in so many species, the researchers say there is sufficient evidence to suggest evolutionary losses can be somewhat reversed.
We often think of evolution as a force that moves in just one direction—forward. But really, an organism's ecological circumstances are continuously dynamic, and sometimes becoming the 'fittest' means revisiting traits that were once less beneficial.
The re-elaboration of Hydrophis cyanocinctus' visual function was in response to its bright underwater environment—which differed from the low-light habitats of some of its ancestors.
Snakes descended from lizard-like ancestors which had a full visual opsin complement, which makes sense as they inhabited bright, colorful environments.
The earliest snakes underwent a period of dim-light living, and consequently lost two visual opsin genes, which caused them to lose much of their ability to distinguish colours.
Descendants of these earlier snakes inhabit a diverse variety of light environments today, including bright and colorful marine ecosystems. This opsin expansion showcases how new sensory innovations can more or less re-elaborate visual functions previously thought to be lost.
Though the species of sea snakes identified in this new research have regained the genetic requirements for advanced colour vision, the functions these expanded visual opsins have conferred upon the snakes is unclear and have to be investigated thoroughly now.
Isaac H Rossetto et al, Dynamic Expansions and Retinal Expression of Spectrally Distinct Short-Wavelength Opsin Genes in Sea Snakes, Genome Biology and Evolution (2024). DOI: 10.1093/gbe/evae150
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!