SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 17 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

How sand mining is eroding rivers, livelihoods and cultures

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 19 hours ago. 1 Reply

Sand underpins everything from skyscrapers to smartphones. Sharp sand (as opposed to rounded desert sand) is the key ingredient in concrete, while high-purity silica sand is essential for making the…Continue

The risks scientists will have to face while communicating science

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 5 Replies

                                                     Science communication series - part 15Scientists take lots of risks while coming out in public regarding their work. And sometimes they will have…Continue

Being a woman is no obstacle in science if you are determined and have the will to succeed

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 151 Replies

 I came across this quote when I was in school. Since then I wanted to be like an eagle -…Continue

Tags: success, will, determination, scientists, obstacles

Science invites questioning

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply

Q: Should we question science or just blindly believe what scientist say with research?Krishna:…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on August 6, 2024 at 9:47am

Excessive use of botanicals like turmeric, green tea are harming  livers

Botanicals like turmeric, green tea and black cohosh may seem benign, but their overuse is being increasingly linked to liver injury.

New research suggests that thousands are using at least one of the several leading botanicals. Many are ending up in hospitals for liver toxicity, researchers report.

Because there's almost no  regulatory oversight over botanicals, chemical tests of products linked to liver crises show frequent discrepancies between product labels and detected ingredients.

The researchers focused on the use of six of the most popular botanicals: Turmeric, green tea extract, the Garcinia cambodgia plant, black cohosh, red yeast rice and ashwagandha.

Millions of adults regularly take turmeric supplements, often with the notion that it can ease pain or arthritis. Unfortunately, "multiple randomized clinical trials have failed to demonstrate any efficacy of turmeric-containing products in osteoarthritis," and overdoing it on turmeric has been linked to serious liver toxicity, the researchers said.

Likewise, millions of  adults are estimated to be taking another potential liver toxin, green tea extract, usually to help boost energy and aid in weight loss.

But again, "multiple studies have failed to demonstrate any objective evidence of weight loss and sustained improvement in mood or energy levels" with products containing the active ingredients in green tea extract, the research  team noted.

Other claims, many unfounded, are made for other botanicals: Garcinia cambodgia is touted for weight loss, black cohosh for easing hot flashes and ashwagandha to help build muscle. But scientists noted that consumers may be overdosing on botanicals, or getting misled by labels that don't reflect the actual ingredients in their supplements. That may be leading to more users ending up in the ER.

Part 1

Comment by Dr. Krishna Kumari Challa on August 6, 2024 at 8:51am

Physicists develop new method to combine conventional internet with the quantum internet

Researchers  have developed a new transmitter-receiver concept for transmitting entangled photons over an optical fiber. This breakthrough could enable the next generation of telecommunications technology, the quantum internet, to be routed via optical fibers. The quantum internet promises eavesdropping-proof encryption methods that even future quantum computers cannot decrypt, ensuring the security of critical infrastructure.

In their experiment, the researchers demonstrated that the entanglement of photons is maintained even when they are sent together with a laser pulse. The research results were published in Science Advances.

The physicists could change the colour of a laser pulse with a high-speed electrical signal so that it matches the colour of the entangled photons. This effect enables them to combine laser pulses and entangled photons of the same colour in an optical fiber and separate them again.

This effect could integrate the conventional internet with the quantum internet.

Their experiment shows how the practical implementation of hybrid networks can succeed.

 Philip Rübeling et al, Quantum and coherent signal transmission on a single-frequency channel via the electro-optic serrodyne technique, Science Advances (2024). DOI: 10.1126/sciadv.adn8907

Comment by Dr. Krishna Kumari Challa on August 6, 2024 at 8:38am

Sometimes mental effort is associated with unpleasant feelings, study says

If somebody complains that it hurts to think, they may be onto something, as mental exertion appears to be associated with unpleasant feelings in many situations, according to research published in the journal Psychological Bulletin.

Managers often encourage employees, and teachers often encourage students to exert mental effort. On the surface, this seems to work well: Employees and students do often opt for mentally challenging activities. From this, you may be tempted to conclude that employees and students tend to enjoy thinking hard. But the study results suggest that this conclusion would be false: In general, people really dislike mental effort.

Researchers conducted a meta-analysis of 170 studies, published between 2019 and 2020 and comprising 4,670 participants, to examine how people generally experience mental effort. They did so by testing whether mental effort is associated with unpleasant feelings and whether that association depends on the task or the population involved.

The studies used a variety of participants (e.g., health care employees, military employees, amateur athletes, college students) from 29 countries and involved 358 different cognitive tasks (e.g., learning a new technology, finding one's way around an unfamiliar environment, practicing golf swings, playing a virtual reality game).

In all studies analyzed, participants reported the level of effort they exerted as well as the extent to which they experienced unpleasant feelings such as frustration, irritation, stress or annoyance.

Across all populations and tasks, the greater the mental effort, the greater the unpleasantness experienced by participants.

These findings show that mental effort feels unpleasant across a wide range of populations and tasks.

This is important for professionals, such as engineers and educators, to keep in mind when designing tasks, tools, interfaces, apps, materials or instructions. When people are required to exert substantial mental effort, you need to make sure to support or reward them for their effort, say the researchers.

One interesting finding, according to them, was that while the association between mental effort and adverse feelings was still significant, it was less pronounced in studies conducted in Asian countries compared with those in Europe or North America!

This fits with the general idea that the aversiveness of mental effort may depend on people's learning history. High school students in Asian countries tend to spend more time on schoolwork than their European or North American counterparts and may therefore learn to withstand higher levels of mental exertion early on in their lives.

More important is the real-world observation that, despite the aversive nature of mentally challenging tasks, people still voluntarily engage in them.

The Unpleasantness of Thinking: A Meta-Analytic Review of the Association Between Mental Effort and Negative Affect, Psychological Bulletin (2024). DOI: 10.1037/bul0000443

Comment by Dr. Krishna Kumari Challa on August 6, 2024 at 8:31am

New biomaterial regrows damaged cartilage in joints

scientists have developed a new bioactive material that successfully regenerated high-quality cartilage in the knee joints of a large-animal model.

Although it looks like a rubbery goo, the material is actually a complex network of molecular components, which work together to mimic cartilage's natural environment in the body.

In the new study, the researchers applied the material to damaged cartilage in the animals' knee joints. Within just six months, the researchers observed evidence of enhanced repair, including the growth of new cartilage containing the natural biopolymers (collagen II and proteoglycans), which enable pain-free mechanical resilience in joints.

Stupp, Samuel I., A bioactive supramolecular and covalent polymer scaffold for cartilage repair in a sheep model, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2405454121

Comment by Dr. Krishna Kumari Challa on August 6, 2024 at 8:25am

Streetlights running all night makes leaves so tough that insects can't eat them, threatening the food chain

Light pollution disrupts circadian rhythms and ecosystems worldwide—but for plants, dependent on light for photosynthesis, its effects could be profound. Now scientists writing in Frontiers in Plant Science have found that exposure to high levels of artificial light at night makes tree leaves grow tougher and harder for insects to eat, threatening urban food chains.

Compared to natural ecosystems, tree leaves in most urban ecosystems generally show little sign of insect damage. Scientists were curious as to why. Their observations show that   in two of the most common tree species in Beijing, artificial light at night led to increased leaf toughness and decreased levels of leaf herbivory.

Artificial light has increased levels of night-time brightness by almost 10%: most of the world's population experiences light pollution every night. Because plant properties affect their interactions with other plants and animals, any changes to plants caused by artificial light could have a significant impact on the ecosystem.

Leaves that are free of insect damage may bring comfort to people, but not insects. Herbivory is a natural ecological process that maintains the biodiversity of insects.

The scientists suspected that plants experiencing high levels of artificial light would focus on defense rather than growth, producing tougher leaves with more chemical defense compounds. 

In their experiments,  they  found that the more intense the light, the more frequently they encountered leaves that showed no signs at all of herbivory.

It is possible that trees exposed to artificial light at night may extend their photosynthesis duration. Additionally, these leaves might allocate a greater proportion of resources to structural compounds, such as fibers, which could lead to an increase in leaf toughness.

Lower levels of herbivory imply lower abundances of herbivorous insects, which could in turn result in lower abundances of predatory insects, insect-eating birds, and so on. 

If there 're less pollinating insects, that would also affect the fruit yield.

 Artificial light at night decreases leaf herbivory in typical urban areas, Frontiers in Plant Science (2024). DOI: 10.3389/fpls.2024.1392262

Comment by Dr. Krishna Kumari Challa on August 6, 2024 at 8:10am

Researchers use vibrations from traffic to measure underground soil moisture

Researchers have developed a new method to measure soil moisture in the shallow subterranean region between the surface and underground aquifers. This region, called the vadose zone, is crucial for plants and crops to obtain water through their roots.

However, measuring how this underground moisture fluctuates over time and between geographical regions has traditionally relied on satellite imaging, which only gives low-resolution averages and cannot penetrate below the surface. Additionally, moisture within the vadose zone changes rapidly—a thunderstorm can saturate a region that dries out a few days later.

The new method relies upon seismic technology that normally measures how the ground shakes during earthquakes. However, it can also detect the vibrations of human activity, like traffic. As these vibrations pass through the ground, they are slowed down by the presence of water—the more moisture, the slower the vibration moves. The new study measures the water content in the vadose zone through seismic rumblings from everyday traffic.

The new method is based on a technique pioneered in the  lab, called distributed acoustic sensing (DAS). With this technique, lasers are pointed into unused underground fiber-optic cables (like the kind that provides the internet).

As a seismic wave, or any kind of vibration, passes through the cable, the laser light bends and refracts. Measuring the wiggles in this laser light gives researchers information about the passing wave, making the 10-kilometer cable equivalent to a line of thousands of conventional seismic sensors.

The ability to measure vadose zone moisture in real time is crucial for managing water use and conservation efforts. 

Fiber-optic seismic sensing of vadose zone soil moisture dynamics, Nature Communications (2024).

Comment by Dr. Krishna Kumari Challa on August 3, 2024 at 9:28am

Scientists have known since the 70s that when multiple phages infect the same cell, it impacts the outcome of the infection. In this paper, they were able to take precise measurements.
The researchers were surprised to find that the entry of a phage's genetic material could be impeded by the other coinfecting phages. They found that when there were more phages attached to the surface of the cell, relatively fewer of them were able to enter.
Their data shows that the first stage of infection, phage entry, is an important step that was previously underappreciated. The researchers found that the coinfecting phages were impeding each other's entry by perturbing the electrophysiology of the cell.
The outermost layer of bacteria is constantly dealing with the movement of electrons and ions that are crucial for energy generation and transmitting signals in and out of the cell. Over the past decade, researchers have started realizing the importance of this electrophysiology in other bacterial phenomena, including antibiotic resistance. This paper opens a new avenue for research in bacterial electrophysiology—its role in phage biology.
By influencing how many phages actually enter, these perturbations affect the choice between lysis and lysogeny. This study also shows that entry can be impacted by environmental conditions such as the concentration of various ions.

 Thu Vu Phuc Nguyen et al, Coinfecting phages impede each other's entry into the cell, Current Biology (2024). DOI: 10.1016/j.cub.2024.05.032

Part 2

**

Comment by Dr. Krishna Kumari Challa on August 3, 2024 at 9:24am

Coinfecting viruses obstruct each other's cell invasion

The process by which phages—viruses that infect and replicate within bacteria—enter cells has been studied for over 50 years. In a new study, researchers  have used cutting-edge techniques to look at this process at the level of a single cell.

The field of phage biology has seen an explosion over the last decade because more researchers are realizing the significance of phages in ecology, evolution, and biotechnology. 

This new work is unique because we looked at phage infection at the level of individual bacterial cells.

The process of phage infection involves the attachment of the virus to the surface of a bacterium. Following this, the virus injects its  into the cell. After entering, a phage can either force the cell to produce more phages and eventually explode, a process called cell lysis, or the phage can integrate its genome into the bacterial one and remain dormant, a process called lysogeny. The outcome depends on how many phages are simultaneously infecting the cell. A single phage causes lysis, while infection by multiple phages results in lysogeny.

In the current study, the researchers wanted to ask whether the number of infecting phages that bind to the bacterial surface corresponds to the amount of viral genetic material that is injected into the cell. To do so, they fluorescently labeled both the protein shell of the phages and the genetic material inside. They then grew Escherichia coli, used different concentrations of infecting phages, and tracked how many of them were able to inject their genetic material into E. coli.

Part 1

Comment by Dr. Krishna Kumari Challa on August 3, 2024 at 9:20am

The researchers added these fast-joining RNA bases into a watery solution, provided an energy source and examined the length of the RNA molecules that formed. Their findings were sobering, as the resulting strands of up to five base pairs only survived for a matter of minutes.

The results were different, however, when the researchers started by adding short strands of pre-formed RNA. The free complementary bases quickly joined with this RNA in a process called hybridization. Double strands of three to five base pairs in length formed and remained stable for several hours.

The exciting part is that double strands lead to RNA folding, which can make the RNA catalytically active.

Double-stranded RNA therefore has two advantages: it has an extended lifespan in the primordial soup and serves as the basis for catalytically active RNA.

Another characteristic of double-stranded RNA could have helped bring about the origin of life. It is firstly important to note that RNA molecules can also form protocells. These are tiny droplets with an interior fully separated from the outside world. Yet, these protocells do not have a stable cell membrane and so easily merge with other protocells, which causes their contents to mix.

This is not conducive to evolution because it prevents individual protocells from developing a unique identity. However, if the borders of these protocells are composed of double-stranded DNA, the cells become more stable and merging is inhibited.

Christine M. E. Kriebisch et al, Template-based copying in chemically fuelled dynamic combinatorial libraries, Nature Chemistry (2024). DOI: 10.1038/s41557-024-01570-5

Part 2

**

Comment by Dr. Krishna Kumari Challa on August 3, 2024 at 9:17am

Researchers demonstrate mechanism that may have stabilized the first RNA molecules

The origins of life remain a major mystery. How were complex molecules able to form and remain intact for prolonged periods without disintegrating? A team at ORIGINS, a Munich-based Cluster of Excellence, has demonstrated a mechanism that could have enabled the first RNA molecules to stabilize in the primordial soup.

When two RNA strands combine, their stability and lifespan increase significantly. The work is published in the journal Nature Chemistry.

In all likelihood, life on Earth began in water, perhaps in a tide pool that was cut off from seawater at low tide but flooded by waves at high tide. Over billions of years, complex molecules like DNA, RNA and proteins formed in this setting before, ultimately, the first cells emerged. 

RNA is a fascinating molecule. It can store information and also catalyze biochemical reactions. Scientists therefore think that RNA must have been the first of all complex molecules to form.

The problem, however, is that active RNA molecules are composed of hundreds or even thousands of bases and are very unstable. When immersed in water, RNA strands quickly break down into their constituent parts—a process known as hydrolysis. So, how could RNA have survived in the primordial soup?

In laboratory testing, the researchers from TUM and LMU used a model system of RNA bases that join together more easily than naturally occurring bases in our cells today.

Part 1

 

Members (22)

 
 
 

Badge

Loading…

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service