Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 8 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 9 hours ago. 2 Replies 0 Likes
A Physicist recently told me this story and I think this is very interesting and therefore, am posting it here...Einstein deserves all the hype he gets. But gravitational waves are an interesting…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 10 hours ago. 2 Replies 0 Likes
Q: What constitutes ‘hurting religious sentiments’? Krishna: Deliberate and malicious acts, intended to outrage religious feelings or any class by insulting its religion or religious beliefs –…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Do you know why I never use these tea bags? Because my instinct told me they don't have good vibes! And I am right!Research has characterized in detail how polymer-based commercial tea bags release…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Investigators have identified a new way to deliver instructions that tell stem cells to grow into specific bodily structures, a critical step in eventually regenerating and repairing tissues and…Continue
Comment
Factors beyond carbohydrates have a substantial influence on blood glucose levels meaning current automated insulin delivery systems miss vital information required for glucose regulation, a new study has found.
A team of researchers analyzing automated insulin delivery data from people with type 1 diabetes (T1D) has discovered that unexpected patterns in insulin needs are just as common as well-established ones.
The study, published as a preprint on JMIRx Med, aimed to identify patterns in changes in insulin needs and to analyze how frequently these occur in people with T1D who use OpenAPS, a state-of-the-art, automated insulin delivery system (AID).
The results support the hypothesis that factors beyond carbohydrates play a substantial role in euglycemia—the state when blood glucose levels are within the standard range.
However, without measurable information about these factors, AID systems are left to adjust insulin cautiously with the effect of blood glucose levels becoming too low or high.
Type 1 diabetes is a chronic condition in which the body produces too little insulin, a hormone needed to regulate blood glucose.
The principal treatment for T1D is insulin that is injected or pumped. The amount and timing of insulin must be skillfully matched to carbohydrate intake to avoid increased blood glucose levels.
Beyond carbohydrates, various other factors such as exercise, hormones, and stress impact insulin needs.
However, how often these factors cause significant unexpected effects on blood glucose levels has been little explored, meaning that despite all advances, insulin dosing remains a complex task that can go wrong and result in blood glucose levels outside the range that protects people with T1D from adverse health effects.
The findings highlight the complexity of glucose regulation in T1D and demonstrate the heterogeneity in insulin needs among people with T1D, underlining the need for personalized treatment approaches.
For factors beyond carbohydrates to become more systematically included in clinical practice, scientists need to find a way to measure and quantify their impact and utilize this information in insulin-dosing. This could also aid more accurate blood glucose forecasting, which the study showed is not consistently possible from information about insulin and carbohydrates alone.
Isabella Degen et al, Beyond Expected Patterns in Insulin Needs of People With Type 1 Diabetes: Temporal Analysis of Automated Insulin Delivery Data, JMIRx Med (2024)
Public health recommendations generally suggest drinking eight cups of water a day. And many people just assume it's healthy to drink plenty of water. Now researchers at UC San Francisco have taken a systematic look at the available evidence. They concluded that drinking enough water can help with weight loss and prevent kidney stones, as well as migraines, urinary tract infections and low blood pressure.
The study, which analyzed 18 randomized controlled trials, was published on Nov. 25 in JAMA Network Open.
The researchers found the most evidence in favor of drinking water to prevent kidney stones and to help people lose weight.
Drinking eight cups of water a day significantly decreased the likelihood of getting another kidney stone.
Several studies found that drinking about six cups of water a day helped adults lose weight. But a study that included adolescents found that drinking a little more than eight cups of water a day had no effect.
Still, the authors said that encouraging people to drink water before meals would be a simple and cheap intervention that could have huge benefits, given the increased prevalence of obesity.
Other studies indicated that water can help prevent migraines, control diabetes and low blood pressure, and prevent urinary tract infections.
Adults with recurrent headaches felt better after three months of drinking more water.
Drinking about four more cups of water a day helped diabetic patients whose blood glucose levels were elevated.
Drinking an additional six cups a day of water also helped women with recurrent urinary tract infections. It reduced the number of infections and increased the amount of time between them.
And drinking more water helped young adults with low blood pressure.
On the other hand, someone who suffers from frequent urination at times may benefit from drinking less.
There isn't a one-size fits all approach for water consumption.
Hakam N, et al. Outcomes in Randomized Clinical Trials Testing Changes in Daily Water Intake: A Systematic Review. JAMA Network Open. (2024) DOI: 10.1001/jamanetworkopen.2024.47621
**
Researchers have characterized 28 actinomycetes and investigated their biotechnological potential.
The results of the study show that all actinomycetes have an inhibiting effect against a panel of test bacteria and yeasts. The researchers have now published their findings in the journal Current Research in Microbial Sciences.
Actinomycetes are bacteria that are known to produce bioactive substances. Two thirds of the antibiotics in use today were originally isolated from these bacteria. The actinomycetes now being investigated were deposited in the DSMZ collection decades ago, but have not yet been characterized in detail.
In their study, the researchers investigated the natural compound synthesis potential of 28 actinomycetes and were able to prove that they have an inhibiting effect against selected other microorganisms. These include clinically relevant antibiotic-resistant bacteria that are on the World Health Organization's Bacterial Priority Pathogens List. The DSMZ's actinomycetes collection contains more than 6,000 strains, some of which have not yet been further analyzed.
Imen Nouioui et al, Biotechnological and pharmaceutical potential of twenty-eight novel type strains of Actinomycetes from different environments worldwide, Current Research in Microbial Sciences (2024). DOI: 10.1016/j.crmicr.2024.100290
Looking to inform the conservation of critically endangered bird species, biologists have completed an analysis identifying traits that correlate with all 216 bird extinctions since 1500.
Species most likely to go extinct sooner were endemic to islands, lacked the ability to fly, had larger bodies and sharply angled wings, and occupied ecologically specific niches, according to research published this month. The work appears in the journal Avian Research.
While some of these findings mirror previous research on extinct birds, they are the first to correlate bird traits with the timing of extinctions.
The team simultaneously analyzed a broad range of biogeographical, ecological and life history traits previously associated with extinction and extinction risk for bird species that have gone extinct as well as those that lack recent confirmed sightings and have therefore disappeared.
While only around 2% of the world's bird species have gone extinct since 1500, the year Kittelberger's analysis begins, even more had already disappeared by then. Before 1500, however, there is not as reliable a record of the birds that went extinct and data on their traits and characteristics.
This timing coincides with the rise of scientific observation, resulting in systematic documentation of plant and animal life.
Today, 1,314 bird species are at risk of extinction, according to the IUCN Red List of Threatened Species, or about 12% of the total.
Importantly, they examine biological correlates of bird extinctions through the lens of when birds went extinct, providing a novel extinction timing element that helps better inform why birds with certain traits disappeared when they did.
By identifying traits that most predispose birds to extinction, the findings can help guide conservation efforts of hundreds of species that are at peril.
Kyle D. Kittelberger et al, Correlates of avian extinction timing around the world since 1500 CE, Avian Research (2024). DOI: 10.1016/j.avrs.2024.100213
Modern humans, Neanderthals, and other recent relatives on our human family tree evolved bigger brains much more rapidly than earlier species, a new study of human brain evolution has found.
Scientists found that brain size increased gradually within each ancient human species rather than through sudden leaps between species. The research, published November 26 in the Proceedings of the National Academy of Sciences, overturns long-standing ideas about human brain evolution.
The team assembled the largest-ever dataset of ancient human fossils spanning 7 million years and used advanced computational and statistical methods to account for gaps in the fossil record. These innovative approaches provided the most comprehensive view yet of how brain size evolved over time.
This study completely changes our understanding of how human brains evolved. It was previously thought that brain size jumps dramatically between species, like new upgrades between the latest computer models. This study instead shows a steady, incremental 'software update' happening within each species over millions of years.
The research challenges old ideas that some species, like Neanderthals, were unchanging and unable to adapt and instead highlights gradual and continuous change as the driving force behind brain size evolution.
Big evolutionary changes don't always need dramatic events. They can happen through small, gradual improvements over time, much like how we learn and adapt today, say the researchers.
The researchers also uncovered a striking pattern: While larger-bodied species generally had bigger brains, the variation observed within an individual species did not consistently correlate with body size. Brain size evolution across long evolutionary timescales extending millions of years is therefore shaped by different factors to those observed within individual species—highlighting the complexity of evolutionary pressures on brain size.
The conclusion: Our hallmark large brains arose primarily from gradual changes within individual species.
Thomas A. Püschel et al, Hominin brain size increase has emerged from within-species encephalization, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2409542121
Manmade sounds such as vehicle traffic can mask the positive impact of nature soundscapes on people's stress and anxiety, according to a study published November 27, 2024, in the open-access journal PLOS ONE
Existing research shows that natural sounds, like birdsong, can lower blood pressure, heart, and respiratory rates, as well as self-reported stress and anxiety. Conversely, anthropogenic soundscapes, like traffic or aircraft noise, are hypothesized to have negative effects on human health and well-being in a variety of ways.
The study found that listening to a natural soundscape reduced self-reported stress and anxiety levels, and also enhanced mood recovery after a stressor. However, the benefits of improved mood associated with the natural soundscape was limited when traffic sounds were included.
The natural soundscape alone was associated with the lowest levels of stress and anxiety, with the highest levels reported after the soundscape that included 40 miles per hour traffic.
The authors conclude that reducing traffic speed in urban areas might influence human health and well-being not only through its safety impacts, but also through its effect on natural soundscapes.
The study shows that listening to natural soundscapes can reduce stress and anxiety, and that anthropogenic sounds such as traffic noise can mask potential positive impacts. Reducing traffic speeds in cities is therefore an important step towards more people experiencing the positive effects of nature on their health and well-being.
Natural soundscapes enhance mood recovery amid anthropogenic noise pollution, PLOS ONE (2024). DOI: 10.1371/journal.pone.0311487
The researchers proposed a mathematical definition of cell death. It's based on the way cellular states, including metabolism, can be controlled by modulating the activities of enzymes. They define dead states as those states from which cells cannot return to an apparent "living" state, regardless of the modulation of any biochemical processes.
This led them to develop a computational method for quantifying the life-death boundary, which they call "stoichiometric rays." The method was developed by focusing on enzymatic reactions and the second law of thermodynamics, which states that systems naturally move from ordered to disordered states.
Researchers could use these methods to better understand, control, and possibly even reverse, cellular death in controlled lab experiments.
The conclusion : We naively believe that death is irreversible, but it is not so trivial and does not have to be the case. Should death come more under our control, human beings, our understanding of life, and society will change completely. In this sense, to understand death is crucial in terms of science and also in terms of social implications. This is one step towards that goal.
Yusuke Himeoka et al, A theoretical basis for cell deaths. Physical Review Research (2024). On arXiv. DOI: 10.48550/arxiv.2403.02169
Part 2
Cellular death is a fundamental concept in the biological sciences. Given its significance, its definition depends on the context in which it takes place, and lacks a general mathematical definition.
Researchers now propose a new mathematical definition of death based on whether a potentially dead cell can return to a predefined "representative state of living," which are the states of being that we can confidently call "alive." The researchers' work could be useful for biological researchers and future medical research.
The paper is published in Physical Review Research.
While it's not something we like to think about, death comes for us all eventually, whether you're an animal, a plant, or even a cell. And even though we can all differentiate between what is alive and dead, it might be surprising to know that death at a cellular level lacks a widely recognized mathematical definition.
Given that cell death plays such an important role in various biological processes and can have important health implications, it's of critical importance to understand what we really mean by cellular death, especially in research.
The scientific goal is to understand the inherent difference between life and nonlife, mathematically; why the transition from nonlife to life is so difficult, while the other way around is so easy.
The aim in this project was to develop a mathematical definition and computational method to quantify the life-death boundary. Researchers were able to do this by exploiting an important feature of biological reaction systems, specifically enzymatic reactions within cells.
Part 1
In patients with long COVID, lower pulmonary gas exchange may be associated with impaired cognitive function, according to a study presented at the annual meeting of the Radiological Society of North America (RSNA).
People with long COVID may exhibit a wide variety of symptoms, including difficulty concentrating ("brain fog"), change in sense of smell or taste, fatigue, joint or muscle pain, dyspnea (shortness of breath), digestive symptoms, and more. These symptoms may persist for weeks, months, or even years after COVID-19 infection.
In pulmonary gas exchange, oxygen moves from the lungs to the bloodstream, while carbon dioxide moves from the bloodstream to the lungs.
If these findings can be generalized to the long COVID population, the study suggests that there may be a causative relationship between cognitive dysfunction and lung dysfunction, suggesting a potential treatment strategy using methods that target improved gas exchange, say the researchers.
© 2024 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!