SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 18 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

How do coconuts get their water?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 18 hours ago. 1 Reply

Image source: WIKIPEDIACoconut trees are iconic plants found across the…Continue

Bird flu could be on the cusp of transmitting between humans—but there are ways to slow down viral evolution

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Pathogen transmission can be modeled in three stages. In Stage 1, the…Continue

Science versus Supernatural

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply

Q: Science does not understand energy and the supernatural world because science only studies the material world. Is that why scientists don't believe in magic, manifestation or evil eye? Why flatly…Continue

Variations in Interphalangeal Creases

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply

Q: Why do I have four horizontal lines on my fingers? My child has the same thing.Krishna: You should have posted pictures of your fingers. I would like to see and then guess what condition it really…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on August 9, 2024 at 10:22am

Research demonstrates genetically diverse crowds are wiser

A new study by researchers reveals that genetically diverse groups make more accurate collective judgments compared to genetically homogeneous groups.

The research, published in Personality and Individual Differences, provides new insights into the origins of the 'wisdom of crowds' phenomenon, emphasizing the role of genetic diversity in enhancing collective intelligence.

Past studies have suggested that combining individual judgments can improve accuracy, especially when individuals differ in background, education, and demography.

The study involved 602 identical and fraternal twins, who participated by making numerical judgments in pairs. These pairs consisted either of co-twins (related pairs) or non-related individuals (unrelated pairs).

The results of this study revealed that judgments made by unrelated (i.e., heterogenous) pairs were more accurate than those made by related (i.e., homogeneous) pairs. Theoretically, however, this finding could emerge either from environmental or genetic factors.

In order to distinguish between environmental and genetic factors, the study compared the performance of related and unrelated pairs, separately among identical and fraternal twins.
This comparison is relevant as genetic influences make identical twins more similar to one another compared to fraternal twins, because the former share virtually 100% of their genetic variance, whereas fraternal twins share, on average, 50% of the genetic variance.


The findings revealed that the superior performance of unrelated versus related pairs was evident for the identical twins. This underscores the impact of genetic relatedness on collective judgment.

Comment by Dr. Krishna Kumari Challa on August 9, 2024 at 10:12am

Scientists unravel how the BCG vaccine leads to the destruction of bladder cancer cells

Using zebrafish "avatars," an animal model developed by the Cancer Development and Innate Immune Evasion lab, researchers studied the initial steps of the Bacillus Calmette-Guérin (BCG) vaccine's action on bladder cancer cells.

Their results, which are published in the journal Disease Models and Mechanisms, show that macrophages—the first line of immune cells activated after an infection—literally induce the cancer cells to commit suicide and then rapidly eat away the dead cancer cells.

The BCG vaccine was first used against TB in the 1920's and then started to be used as the first cancer immunotherapy around 1976. But decades before that, in the 1890's, William Coley, a surgeon working at the New York Hospital (now Weill Cornell Medical Center) had already tested a mix of different bacteria, coined "Coley's toxins," as a cancer immunotherapy.

Coley had noticed that several virtually hopeless cancer patients at the hospital went into seemingly "miraculous" remissions from their cancer when they caught a bacterial infection following the surgery performed to remove their tumors (sterile conditions for surgical procedures were then less than optimal). His idea was that such recoveries, far from being miraculous, were in fact caused by an immune response of the patients to the infection.

Coley started trying to induce bacterial infections in a number of sarcoma patients and was able to reproduce a few cancer remissions. At the time, though, his method was far from being proven and safe—and meanwhile, other treatment methods were developed, such as radiotherapy—so his research was not pursued. But in recent years, the field of immunotherapy has gained enormous momentum, bringing new and more scientifically robust ways of boosting the immune system to fight cancer. 

BCG immunotherapy is still rather empirically used. However, since it works for many people, it has become a gold standard treatment. Surprisingly, it is a very effective immunotherapy, even when compared to so many fancy immunotherapies that are being developed."

The treatment consists of instilling the BCG vaccine directly into the bladder. When the treatment works, the 15-year survival rate for patients with so-called "non-muscle-invasive" (early-stage) bladder cancer is 60% to 70%. However, in 30% to 50% of the cases, bladder tumors are unresponsive to BCG treatment. In these cases, the whole bladder has to be removed.

Macrophages directly kill bladder cancer cells through TNF signaling in an early response to BCG therapy, Disease Models & Mechanisms (2024). DOI: 10.1242/dmm.050693

Comment by Dr. Krishna Kumari Challa on August 9, 2024 at 9:25am

How intermittent fasting regulates aging through autophagy

Research published recently in Nature Cell Biology, sheds light on the mechanism through which spermidine regulates autophagy, a process that ensures the recycling of components within the cell, to promote the anti-aging effects of intermittent fasting.

The work demonstrated that intermittent fasting increases the levels of spermidine, a chemical compound (natural polyamine), that enhances the resilience and survival of cells and organisms, through the activation of autophagy.  

Autophagy is a process of cellular recycling, the destruction of non-functional/unnecessary components and organelles of the cell. Autophagy defects have been linked to aging, as well as, with the emergence of age-related disorders, such as diabetes, cardiovascular diseases, cancer and neurodegenerative diseases.

Dietary habits, such as low or high-fat diet, over-nutrition, or fasting can influence the development of these chronic diseases, the prevalence of which is expected to increase considerably in the coming years. Dietary interventions, such as caloric restriction and intermittent fasting, can slow down aging and promote longevity.

A key element of these interventions is the maintenance of cellular homeostasis through the induction of autophagy. Direct administration of spermidine is an alternative strategy for inducing autophagy and extending lifespan. However, the role of spermidine in the regulation of autophagy and aging upon intermittent fasting remains unclear.

Using a range of experimental models, ranging from the nematode (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), fruit fly (Drosophila melanogaster), mouse (Mus musculus), and human cell lines, the research teams of this study have shown that intermittent fasting increases the cellular levels of spermidine, which in turn induces autophagy, resulting in the prolongation of lifespan in these organisms.

Conversely, inhibition of spermidine synthesis, using appropriate inhibitors, counteracts the benefits of autophagy on lifespan through intermittent fasting.

The results of the research highlight the critical role of spermidine in regulating autophagy under intermittent fasting, thereby improving lifespan expectancy across all model organisms studied. The fact that the regulation of autophagy through spermidine and intermittent fasting is an evolutionarily conserved process, underscores its central role in monitoring and maintaining cellular homeostasis across different organisms.

Sebastian J. Hofer et al, Spermidine is essential for fasting-mediated autophagy and longevity, Nature Cell Biology (2024). DOI: 10.1038/s41556-024-01468-x

Comment by Dr. Krishna Kumari Challa on August 9, 2024 at 8:15am

Study observes that similarities between physical and biological systems might be greater than we think

A crowd or a flock of birds have different characteristics from those of atoms in a material, but when it comes to collective movement, the differences matter less than we might think. We can try to predict the behavior of humans, birds, or cells based on the same principles we use for particles.

This is the finding of a study published in the Journal of Statistical Mechanics: Theory and Experiment, JSTAT, conducted by an international team of researchers.  The study, based on the physics of materials, simulated the conditions that cause a sudden shift from a disordered state to a coordinated one in "self-propelled agents" (like biological ones).

"In a way, birds are flying atoms", say the researchers, " It may sound strange, but indeed, one of our main findings was that the way a walking crowd moves, or a flock of birds in flight, shares many similarities with the physical systems of particles". 

In the field of collective movement studies, it has been assumed that there is a qualitative difference between particles (atoms and molecules) and biological elements (cells, but also entire organisms in groups). It was especially believed that the transition from one type of movement to another (for example, from chaos to an orderly flow, known as a phase transition) was completely different.

The crucial difference for physicists in this case has to do with the concept of distance. Particles moving in a space with many other particles influence each other primarily based on their mutual distance. For biological elements, however, the absolute distance is less important.

Take a pigeon flying in a flock: what matters to it are not so much all the closest pigeons, but those it can see." In fact, according to the literature, among those it can see, it can only keep track of a finite number, due to its cognitive limits.

The pigeon, in the physicists' jargon, is in a "topological relationship" with other pigeons: two birds could be at quite a large physical distance, but if they are in the same visible space, they are in mutual contact and influence each other.

It was long thought that this type of difference led to a completely different scenario for the emergence of collective motion This new study, however, suggests that this is not a crucial difference.

These statistical models, based on the physics of particles, can  also help us understand biological collective movement.

Fluctuation-Induced First Order Transition to Collective Motion, Journal of Statistical Mechanics Theory and Experiment (2024). DOI: 10.1088/1742-5468/ad6428

**

Comment by Dr. Krishna Kumari Challa on August 9, 2024 at 7:49am

Based on their findings, the researchers designed a lensless fluorescence system using large (1–2 mm2) LEDs and detectors, which have recently become available in UV wavelengths. It works by using UV light to excite proteins from harmful microbes and then detecting the resulting fluorescence.

In addition to demonstrating the lensless system's sensitivity, they also showed that it produced a fluorescence signal that is about double the strength of a lensed system. They found that the performance of the lensed system was limited by its numerical aperture, the use of larger sources and detectors and the finite imaging distance required between the components and the sample.

The researchers are now developing a pocket-sized version of the lensless fluorometers for field testing.

 Asim Maharjan et al, Lensless fluorometer outperforms lensed system, Optica (2024). DOI: 10.1364/OPTICA.527289

Part 2

Comment by Dr. Krishna Kumari Challa on August 9, 2024 at 7:48am

Lens-free fluorescence instrument detects deadly microorganisms in drinking water

Researchers have shown that a fluorescence detection system that doesn't contain any lenses can provide highly sensitive detection of deadly microorganisms in drinking water. With further development, the new approach could provide a low-cost and easy-to-use way to monitor water quality in resource-limited settings such as developing countries or areas affected by disasters.

It could also be useful when water safety results are needed quickly, such as for swimming events, a concern highlighted during the Paris Olympics.

Current methods used to assess microbial contamination in water require culturing the water samples and then quantifying harmful bacteria. This can take over 18 hours, making it impractical when immediate confirmation of water safety is needed. This is also a key reason why water surveillance is ineffective in developing countries, where the required skilled human resources, infrastructure and reagents are not readily available.

The  new water monitoring fluorometer can detect fluorescent proteins from bacteria in water down to levels of less than one part per billion, without using any lenses.

This sensitivity meets the World Health Organization's criteria for detecting fecal contamination in drinking water.

During development, the researchers closely examined the fundamentals of optical signal generation in applications like water quality monitoring.

They discovered that while optical lenses are commonly used in devices such as cameras, microscopes and telescopes, these optical components often reduce performance for practical situations that don't require images.

This was an important finding because lenses account for a significant share of the costs of optical systems and their bulk and weight make it difficult to create practical portable devices.

The new analysis revealed that using a light source, detectors and sample sizes that are all as large and as close to each other as possible produces a stronger signal, leading to better performance for water quality monitoring.

Part 1

Comment by Dr. Krishna Kumari Challa on August 9, 2024 at 7:37am

However, it was also similar to the microbiome in an industrial habitat: namely, on solar panels. The authors proposed that the constant thermal shock, electromagnetic radiation, and desiccation in such highly irradiated environments has repeatedly selected for highly resistant microbes, in the same manner as in microwaves.

For both the general public and laboratory personnel, the researchers recommend regularly disinfecting microwaves with a diluted bleach solution or a commercially available disinfectant spray. In addition, it is important to wipe down the interior surfaces with a damp cloth after each use to remove any residue and to clean up spills immediately to prevent the growth of bacteria.

The microwave bacteriome: biodiversity of domestic and laboratory microwave ovens, Frontiers in Microbiology (2024). DOI: 10.3389/fmicb.2024.1395751

Part 2

Comment by Dr. Krishna Kumari Challa on August 9, 2024 at 7:36am

Microbes conquer the next extreme environment: Your microwave

Since the industrial revolution, microbes have successfully colonized one novel type of habitat after another: for example, marine oil spills, plastic floating in the oceans, industrial brownfields, and even the interior of the International Space Station.

However, it turns out that one extreme environment harboring a specialized community of highly adapted microbes is much closer to home: inside microwaves. This finding has now been reported for the first time by researchers  in a study in Frontiers in Microbiology. It's not only important from the perspective of hygiene, but could also inspire biotechnological applications—if the strains found inside microwaves can be put to good use in industrial processes that require especially hardy bacteria.

The research results reveal that domestic microwaves have a more 'anthropized' microbiome, similar to kitchen surfaces, while laboratory microwaves harbour bacteria that are more resistant to radiation.

Researchers sampled microbes from inside 30 microwaves: 10 each from single-household kitchens, another 10 from shared domestic spaces--for example, corporate centers, scientific institutes, and cafeterias--and 10 from molecular biology and microbiology laboratories. The aim behind this sampling scheme was to see if these microbial communities are influenced by food interactions and user habits.

The team used two complementary methods to inventorize the microbial diversity: next-generation sequencing and cultivation of 101 strains in five different media.

In total, the researchers found 747 different genera within 25 bacterial phyla. The most frequently encountered phyla were Firmicutes, Actinobacteria, and especially Proteobacteria.

They found that the composition of the typical microbial community partly overlapped between shared domestic and single-household domestic microwaves, while laboratory microwaves were quite different. The diversity was lowest in single-household microwaves, and highest in laboratory ones.

Part 1

Comment by Dr. Krishna Kumari Challa on August 8, 2024 at 12:24pm

Building on this, the team modeled how landscapes respond to this mantle-driven uplift. They found that migrating mantle instabilities give rise to a wave of surface erosion that lasts tens of millions of years and moves across the continent at a similar speed. This intense erosion removes a huge weight of rock that causes the land surface to rise further, forming elevated plateaus.
Their landscape evolution models show how a sequence of events linked to rifting can result in an escarpment as well as a stable, flat plateau, even though a layer of several thousands of meters of rocks has been eroded away.
The team's study provides a new explanation for the puzzling vertical movements of cratons far from the edges of continents, where uplift is more common.
The team has concluded that the same chain of mantle disturbances that trigger diamonds to quickly rise from Earth's deep interior also fundamentally shape continental landscapes, influencing a host of factors from regional climates and biodiversity to human settlement patterns.

Thomas Gernon, Co-evolution of craton margins and interiors during continental break-up, Nature (2024). DOI: 10.1038/s41586-024-07717-1www.nature.com/articles/s41586-024-07717-1

Part 2

**

Comment by Dr. Krishna Kumari Challa on August 8, 2024 at 12:17pm

Scientists uncover hidden forces causing continents to rise

Scientists have answered one of the most puzzling questions in plate tectonics: how and why "stable" parts of continents gradually rise to form some of the planet's greatest topographic features?

They have found that when tectonic plates break apart, powerful waves are triggered deep within the Earth that can cause continental surfaces to rise by over a kilometer.
Their findings help resolve a long-standing mystery about the dynamic forces that shape and connect some of the Earth's most dramatic landforms—expansive topographic features called 'escarpments' and 'plateaus' that profoundly influence climate and biology.

The new research examined the effects of global tectonic forces on landscape evolution over hundreds of millions of years. The findings are published Aug 8 in the journal Nature.

The research  results help explain why parts of the continents previously thought of as "stable" experience substantial uplift and erosion, and how such processes can migrate hundreds or even thousands of kilometers inland, forming sweeping elevated regions known as plateaus, like the Central Plateau of South Africa.

The researchers  discovered that when continents split apart, the stretching of the continental crust causes stirring movements in Earth's mantle (the voluminous layer between the crust and the core).

This process can be compared to a sweeping motion that moves towards the continents and disturbs their deep foundations.

The team noticed an interesting pattern: the speed of the mantle "waves" moving under the continents in their simulations closely matched the speed of major erosion events that swept across the landscape in Southern Africa following the breakup of the ancient supercontinent Gondwana.

The scientists pieced together evidence to propose that the Great Escarpments originate at the edges of ancient rift valleys, much like the steep walls seen at the margins of the East African Rift today. Meanwhile, the rifting event also sets about a "deep mantle wave" that travels along the continent's base at about 15–20 kilometers per million years.

This wave convectively removes layers of rock from the continental roots.

Much like how a hot-air balloon sheds weight to rise higher, this loss of continental material causes the continents to rise—a process called isostasy.

Part 1

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service