Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 11 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: How was the asteroid belt made?Krishna : The asteroid belt is located between the orbits of Mars and Jupiter and consists of countless rocky bodies known as asteroids. It is thought to have formed about 4.6 billion years ago during the early…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
The public is starting to understand that they can find microplastics in their food, particularly seafood, but exposure from other foods is far more common than…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
A research team has investigated a possible link between the rising number of people with chronic inflammatory bowel disease and the increasing exposure to micro- and nanoplastics (MNPs). The research shows that plastic particles influence the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
You've just cleaned your teeth, you're feeling minty fresh and ready to climb into bed. You take a sip of water, but the water is icy cold, and your next breath feels cool and crisp.What has the toothpaste done to your mouth? And could this be a…Continue
Comment
Leading synthetic biologists have shared hard-won lessons from their decade-long quest to build the world's first synthetic eukaryotic genome in a Nature Biotechnology paper. Their insights could accelerate development of the next generation of engineered organisms, from climate-resilient crops to custom-built cell factories.
The Synthetic Yeast Genome Project (Sc2.0) involved a large, evolving global consortium of 200-plus researchers from more than ten institutions, who jointly set out to redesign and chemically synthesize all 16 chromosomes of baker's yeast from scratch. Macquarie University contributed to the synthesis of two of these chromosomes, comprising around 12% of the project overall.
The process for each chromosome followed the same design principles: removing unstable genetic elements; introducing molecular 'watermarks' to distinguish synthetic DNA from natural sequences; and adding the gene-shuffling system "SCRaMbLE" so researchers could rearrange genes and test their functions.
Unlike traditional genetic engineering, which tweaks existing genomes, Sc2.0 was the first to rewrite an entire genome from the ground up—all 12 million base pairs of it.
Completing all 16 synthetic chromosomes lets us understand genome function at a scale that was simply impossible before.
The chromosomes were assembled in large chunks containing thousands of base pairs, then integrated into living yeast cells step by step, relying on yeast's own cellular machinery to stitch the synthetic pieces into place.
Despite the standardized design principles, every research team encountered similar problems. The paper catalogs these 'bugs' systematically, offering future synthetic biologists a roadmap of what to avoid.
Tiny DNA watermarks, designed to be silent, occasionally disrupted gene function in unexpected ways. Some genes flagged as non-essential turned out to cause significant growth problems when removed.
Yeast cannot regenerate mitochondrial genomes from scratch, so any damage required researchers to perform a genetic rescue operation, where they identified and fixed the problem, then had to reintroduce healthy mitochondria through careful breeding.
Part 1
The team also assessed whether the ZOE MB health-ranked SGBs were more abundant in participants with a defined disease. Indeed, they found that people in the control group had higher favorably ranked gut microbes than people with disease, and that those with diseases had more unfavorably ranked gut microbes than those without disease.
Dietary interventions were also found to increase favorable microbes and reduce unfavorable ones. The team analyzed data from two studies, referred to as ZOE METHOD and BIOME, in which participants either followed a personalized dietary intervention program (PDP) designed to improve the microbiome or took a prebiotic supplement. The microbiomes of these participants changed significantly by the end of the studies.
"The dietary intervention groups of both clinical trials that aimed at improving diet using different approaches (prebiotic blend for BIOME and PDP for METHOD) showed the highest number of significantly changing SGBs. Focusing on the most significant gut microbial SGBs with the largest change in relative abundance after dietary interventions, they found increasing Bifidobacterium animalis—a bacterium present in dairy-based foods and in the microbiome of people consuming larger amounts of them, an unknown Lachnospiraceae bacterium and R. hominis both previously associated with a vegan diet, and another unknown Lachnospiraceae bacterium linked to a vegetarian diet," the authors explain.
In addition to linking known bacterial species to measures of health and diet, the team also discovered many key health-associated microbes that were previously uncharacterized species.
Francesco Asnicar et al, Gut micro-organisms associated with health, nutrition and dietary interventions, Nature (2025). DOI: 10.1038/s41586-025-09854-7
Part2
**
The gut microbiome has been a rising star in the world of health science over the last several years, garnering interest from both researchers and the general public. This is mostly due to its connection to general health and diseases, like type 2 diabetes and heart disease, as well as the fact that it is a modifiable element of human health. However, the science surrounding the fascinating world of gut microbes is still developing and there is much to learn.
A new study, published in Nature, has added significantly to our understanding of the human microbiome. The study team analyzed the gut microbiome, diet and health markers from over 34,500 people in the US and UK, and linked hundreds of specific gut microbe species to key indicators of health and diet. The data come from the Zoe PREDICT program in the UK and US, which is run by the microbiome testing company Zoe.
The researchers used machine learning to link certain gut microbe species in 34,694 study participants to diet and common health risk factors such as BMI, triglycerides, blood glucose and HbA1c, as well as clinical markers that are intermediary measures of cardiometabolic health. Out of 661 non-rare microbial species, the researchers focused in on the 50 that were most favorably associated with good health and the 50 that were the most unfavorably associated with good health.
This process resulted in the development of the "ZOE Microbiome Health Ranking 2025" and "Diet Ranking 2025," used to score microbes as either favorable or unfavorable for health on a scale of 0 to 1. Those closer to zero are considered positively correlated to the health markers and those closer to one are negatively correlated. This was done for all 661 microbes studied.
The ranking system identified hundreds of gut microbe species—described as species-level genome bins (SGBs) in the paper—significantly associated with health markers and diet quality. They found that favorable microbes were more common in people with lower BMI and fewer diseases, while unfavorable microbes were more common in those with obesity and disease. A part of the study focusing on BMI, used data from 5,348 healthy individuals, and divided them into three BMI categories; healthy weight, overweight and obese.
"Meta-analysis based on linear regression on single cohorts showed that individuals with healthy weight carried, on average, 5.2 more of the 50 favorably ZOE MB health-ranked SGBs than people with obesity," the study team writes.
part1
Urban raccoons exhibit shorter snouts compared to rural populations, a trait associated with early domestication syndrome. This morphological change is likely driven by the advantages of tameness and reduced aggression in accessing human food waste. The findings suggest that proximity to humans can induce domestication-related traits in wild species.
Artem Apostolov et al, Tracking domestication signals across populations of North American raccoons (Procyon lotor) via citizen science-driven image repositories, Frontiers in Zoology (2025). DOI: 10.1186/s12983-025-00583-1
For decades, researchers have known that EVs exist, ferrying proteins, fats, and genetic material that mirror the health of their cells of origin. But because blood is a complex mixture—packed with cholesterol, antibodies, and millions of other particles—isolating EVs has long been one of science's toughest challenges.
These vesicles are like tiny envelopes sent between cells, delivering molecular updates about what's happening inside the body, Until now, researchers just couldn't open them properly to read the messages inside.
But now using ultra-pure isolation techniques and cutting-edge multi-omics profiling, the team identified 182 proteins and 52 lipids that make up the core structure of human plasma EVs. They also pinpointed another set of molecules that distinguish EVs from other particles in the bloodstream—effectively decoding the body's molecular communication system.
To make this discovery accessible, the researchers developed EVMap, a free, interactive online resource that lets scientists worldwide explore the molecular makeup of blood EVs.
By decoding this molecular language, we can begin to read the body's own health reports, say the researchers. They have already identified EV signatures linked to early heart disease, which could pave the way for simple blood tests that predict risk long before symptoms appear.
Alin Rai et al, Multi-omics identify hallmark protein and lipid features of small extracellular vesicles circulating in human plasma, Nature Cell Biology (2025). DOI: 10.1038/s41556-025-01795-7
To explain this ability, the study authors proposed their "four components (4Cs) hypothesis." According to this idea, musical beat perception is not unique to vocal learners but rather arises from the combination of four general abilities.
That is being able to hear the beat in music (auditory detection), anticipating the next beat (prediction), acting on the feedback (auditory-motor feedback) and the ability to coordinate these processes through reward (reward-based reinforcement).
Vani G. Rajendran et al, Monkeys have rhythm, Science (2025). DOI: 10.1126/science.adp5220While the young Earth's atmosphere contained sulfur elements, scientists had long thought that organic sulfur compounds, or biomolecules like amino acids, emerged later as a product of the living system.
In previous simulations of early Earth, scientists either failed to detect meaningful amounts of sulfur biomolecules before life existed, or created the molecules only under specialized conditions that were unlikely to be widespread on this planet.
As a result, when the James Webb Space Telescope detected dimethyl sulfide, an organic sulfur compound produced by marine algae on Earth, on another planet called K2-18b, many thought it was a possible sign of life on other planets.
Previously, these researchers successfully created dimethyl sulfide in their lab using only light and common atmospheric gases. This suggested that this molecule could arise in places void of life.
This time,they set off to see what early Earth's sky could have contributed. They shone light on a gas mixture containing methane, carbon dioxide, hydrogen sulfide and nitrogen to simulate Earth's atmosphere before life emerged.
Using a highly sensitive mass spectrometry instrument that can identify and measure different chemical compounds, the team found that the early Earth simulation produced a whole suite of sulfur biomolecules, including the amino acids cysteine and taurine, as well as coenzyme M, a compound critical for metabolism.
When the team scaled their lab results to calculate how much cysteine an entire atmosphere could produce, they found that early Earth's sky might have brought cysteine to supply about one octillion—one followed by 27 zeros—cells. Currently, Earth boasts about one nonillion—one followed by 30 zeros—cells.
The team said in their paper these biomolecules formed in Earth's atmosphere might have fallen onto the ground or oceans with rain, helping to get life started.
An Archean atmosphere rich in sulfur biomolecules, Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2516779122
The breakup of a water jet into droplets is primarily triggered by intrinsic thermal capillary waves—angstrom-scale surface fluctuations—rather than external disturbances or nozzle imperfections. These minute thermal oscillations are amplified by Rayleigh-Plateau instability, determining the breakup length across a wide range of jet sizes.
Stefan Kooij et al, What Determines the Breakup Length of a Jet?, Physical Review Letters (2025). DOI: 10.1103/jf6w-l5sy
Exposure to fatty food odors during pregnancy and breastfeeding, even without maternal weight gain or high-fat intake, can alter offspring brain circuits related to reward and metabolism, increasing their risk of obesity and insulin resistance. Ingested flavoring agents with fatty odors were sufficient to trigger these effects in mice, highlighting potential implications for human metabolic health.
https://medicalxpress.com/news/2025-12-fatty-food-pregnancy-obesity...
**
© 2026 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!