Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 12 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 1 Reply 0 Likes
Why do type 2 diabetics sometimes become thin if their condition is not managed properly?Earlier we used to get this answer to the Q : Type 2 diabetics may experience weight loss and become thin due…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 15 hours ago. 1 Reply 0 Likes
Movies and TV serials shaped how many people imagine a heart attack—someone clutching their chest and collapsing dramatically. But those portrayals are misleading and shouldn't be expected, say the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 13 Replies 0 Likes
Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 5 Replies 0 Likes
When I was a very young school girl, I still remember very well, my Dad used to tell me to bear the pain out and not to scream and cry whenever I hurt myself and was in severe pain. I never ever saw…Continue
Comment
A simple rule that seems to govern how life is organized on Earth is described in a new study published in Nature Ecology & Evolution.
The research team that undertook this work thinks this rule helps explain why species are spread the way they are across the planet. The discovery will help to understand life on Earth—including how ecosystems respond to global environmental changes.
The rule is simple: in every region on Earth, most species cluster together in small "hotspot" areas, then gradually spread outward with fewer and fewer species able to survive farther away from these hotspots.
In every bioregion, there is always a core area where most species live. From that core, species expand into surrounding areas, but only a subset manages to persist. It seems these cores provide optimal conditions for species survival and diversification, acting as a source from which biodiversity radiates outward.
This pattern highlights the disproportionate ecological role these small areas play in sustaining the biodiversity of entire bioregions. Safeguarding these core zones is therefore essential, as they represent critical priorities for conservation strategies.
Researchers studied bioregions across the world, examining species from very different life forms: amphibians, birds, dragonflies, mammals, marine rays, reptiles, and trees.
Given the vast differences in life strategies—some species fly, others crawl, swim, or remain rooted—and the contrasting environmental and historical backgrounds of each bioregion, the researchers expected that species distribution would vary widely across bioregions. Surprisingly, they found the same pattern everywhere.
The pattern points to a general process known as environmental filtering. Environmental filtering has long been considered a key theoretical principle in ecology for explaining species distribution on Earth.
Until now, however, global empirical evidence has been scarce. This study provides broad confirmation across multiple branches of life and at a planetary scale.
It doesn't matter whether the limiting factor is heat, cold, drought, or salinity. The result is always the same: only species able to tolerate local conditions establish and persist, creating a predictable distribution of life on Earth.
The existence of a universal organizing mechanism has profound implications for our understanding of life on Earth. This pattern suggests that life on Earth may be, to some extent, predictable.
Such predictable patterns can help scientists trace how life has diversified through time and offer valuable insights into how ecosystems might react to global environmental changes.
A general rule on the organization of biodiversity in Earth's biogeographical regions, Nature Ecology & Evolution (2025). DOI: 10.1038/s41559-025-02724-5
Astronomers from the University of Hawaiʻi's Institute for Astronomy (IfA) have discovered the most energetic cosmic explosions yet discovered, naming the new class of events "extreme nuclear transients" (ENTs). These extraordinary phenomena occur when massive stars—at least three times heavier than our sun—are torn apart after wandering too close to a supermassive black hole. Their disruption releases vast amounts of energy visible across enormous distances.
The researchers observed stars getting ripped apart as tidal disruption events for over a decade, but these ENTs are different beasts, reaching brightnesses nearly ten times more than what they typically see.
Not only are ENTs far brighter than normal tidal disruption events, but they remain luminous for years, far surpassing the energy outputs of even the brightest known supernova explosions.
The immense luminosities and energies of these ENTs are truly unprecedented. The most energetic ENT studied, named Gaia18cdj, emitted an astonishing 25 times more energy than the most energetic supernovae known. While typical supernovae emit as much energy in just one year as the sun does in its 10 billion-year lifetime, ENTs radiate the energy of 100 suns over a single year.
Jason Hinkle, The Most Energetic Transients: Tidal Disruptions of High Mass Stars, Science Advances (2025). DOI: 10.1126/sciadv.adt0074. www.science.org/doi/10.1126/sciadv.adt0074
The radioactive decay of atomic nuclei has been one of the keystones of nuclear physics since the beginning of nuclear research. Now the heaviest nucleus decaying via proton emission has been measured in the Accelerator Laboratory of the University of Jyväskylä, Finland. The research article was written as part of an international research collaboration involving experts in theoretical nuclear physics and published in Nature Communications on 29 May 2025.
Proton emission is a rare form of radioactive decay, in which the nucleus emits a proton to take a step toward stability.
The new nucleus is so far the lightest known isotope of astatine, 188At, consisting of 85 protons and 103 neutrons. Exotic nuclei of this kind are extremely challenging to study due to their short lifetimes and low production cross sections, so precise techniques are needed.
The nucleus was produced in a fusion-evaporation reaction by irradiating natural silver target with 84Sr ion beam. The new isotope was identified using the detector setup of the RITU recoil separator.
Henna Kokkonen et al, New proton emitter 188At implies an interaction unprecedented in heavy nuclei, Nature Communications (2025). DOI: 10.1038/s41467-025-60259-6
Arbitrary rules are those that are decided or made without any fixed principle, plan, or system, often appearing random or unfair. They are based on individual discretion, preference, or whims, rather than logic or established standards. In legal contexts, arbitrary decisions are often seen as unjust because they lack a rational basis and can disregard fair considerations.
Contrary to the popular saying, rules aren't meant to be broken, as they are foundational to society and exist to uphold safety, fairness and order in the face of chaos. The collective benefits of rule-following are well established, but individual incentives are often unclear. Yet, people still comply, and the reasons why are pieces of a puzzle that researchers of human behavior have been trying to piece together for years.
A recent study published in Nature Human Behavior explored the behavioral principles behind why people follow rules using a newly designed framework called CRISP. A series of four online experiments based on the framework involving 14,034 English-speaking participants, revealed that the majority (55%–70%) of participants chose to follow arbitrary rules—even when the compliance was costly, they were anonymous and violations had no adverse effects on others.
This proposed CRISP system explains rule conformity (C) as a function of four components: R—intrinsic respect for rules, independent of others' behavior; I—extrinsic incentives, such as the threat of punishment for breaking rules; S—social expectations about whether others will follow the rule or believe one should; and P—social preferences, which matter when rule-following affects the well-being of others.
Rules, often described as the "grammar of society," are embedded in nearly every aspect of human social life—personal, professional, and political in written, said and unsaid forms.
Despite their ubiquity, the deeper reasons why individuals choose to follow the rules remain poorly understood. The threat of punishment or social ostracism can motivate compliance, but studies have shown that people often follow the rules even when there are no clear consequences or incentives for doing so.
Understanding these nuances of rule-following behavior can have important implications for policy, law enforcement, and organizational behavior.
This work was done in the UK and Germany. So the results are different
In India they don't follow any rules. ANY!
Simon Gächter et al, Why people follow rules, Nature Human Behaviour (2025). DOI: 10.1038/s41562-025-02196-4
**
Certain medications used in the treatment of bone conditions, particularly when combined with corticosteroids, may significantly increase the risk of a rare but serious jaw disease.
This finding comes from a study which analyzed data from Finnish adult patients who began bone medication between 2013 and 2015. The researchers recommend more careful monitoring and consideration in the use of such medications.
The condition in question is so-called osteonecrosis of the jaw, in which the jawbone weakens and deteriorates as a result of the medication. The incidence of osteonecrosis was 0.3% among low-dose antiresorptive drug (AR) users and as high as 9% among those receiving high doses. Antiresorptive drugs are commonly used in Finland, particularly in the treatment of osteoporosis and in the prevention of bone metastases in patients with breast or prostate cancer. The most commonly used AR drugs are denosumab and bisphosphonates.
According to the study published in Scientific Reports, the risk of jaw osteonecrosis was significantly higher in patients using denosumab. These users were up to five times more likely to suffer serious jaw damage than those taking bisphosphonates.
When corticosteroids were also involved, the risk increased further: simultaneous use of corticosteroids in addition to AR drug increased the risk of developing osteonecrosis of the jaw by 2 times in high-dose AR recipients and 6 times in low-dose AR recipients. Other significant risk factors for jaw osteonecrosis included male sex and a cancer diagnosis.
This is the first population-level study conducted in Finland on the incidence and risk factors of medication-related jaw osteonecrosis. The analysis covered data from nearly 60,000 Finnish patients.
Miika Kujanpää et al, Incidence of medication-related osteonecrosis of the jaw and associated antiresorptive drugs in adult Finnish population, Scientific Reports (2025). DOI: 10.1038/s41598-025-02225-2
Physicists have used cutting-edge nanotechnology to create what they believe may be "the world's smallest violin," which is small enough to fit within the width of a human hair.
The level of information that's available in environmental DNA is such that we're only starting to consider what the potential applications can be, from humans, to wildlife to other species that have implications for human health.
Researchers have developed new methods for deciphering environmental DNA, also known as eDNA, to study sea turtle genetics. They've expanded the tools to study every species—including humans—from DNA captured in environmental samples like water, soil and sand.
But these errant strands of DNA do not just settle into muddy soil or flow along rivers. The air itself is infused with genetic material. A simple air filter running for hours, days or weeks can pick up signs of nearly every species that grows or wanders nearby.
That means you can study species without directly having to disturb them, without ever having to see them. It opens up huge possibilities to study all the species in an area simultaneously, from microbes and viruses all the way up to vertebrates like bobcats and humans, and everything in between.
As a proof of concept, the researchers showed that they could pick up signs of hundreds of different human pathogens from the air, including viruses and bacteria. Such surveillance could help scientists track emerging diseases. The same method can track common allergens, like peanut or pollen, more precisely than is currently possible, the scientists discovered.
With little more than an air filter, scientists could track endangered species and identify where they came from, all without having to lay eyes on skittish animals or root around forest floors for scat samples. When trying to save and conserve wildlife, knowing where an animal originates from can be as important as knowing where it currently is.
This powerful analysis was paired with impressive speed and efficiency. The team demonstrated that a single researcher could process DNA for every species in as little as a day using compact, affordable equipment, and software hosted in the cloud. That quick turnaround is orders of magnitude faster than would have been possible just a few years ago and opens up advanced environmental studies to more scientists around the world.
Shotgun sequencing of airborne eDNA achieves rapid assessment of whole biomes, population genetics and genomic variation, Nature Ecology & Evolution (2025). DOI: 10.1038/s41559-025-02711-w
What happened to all the megafauna? From moas to mammoths, many large animals went extinct between 50 and 10,000 years ago. Learning why could provide crucial evidence about prehistoric ecosystems and help us understand future potential extinctions. But surviving fossils are often too fragmented to determine the original species, and DNA is not always recoverable, especially in hot or damp environments.
Now scientists have isolated collagen peptide markers which allow them to identify three key megafauna that were once present across Australia: a hippo-sized wombat, a giant kangaroo, and a marsupial with enormous claws.
Analyzing the peptides—short chains of amino acids—found in samples of collagen allows scientists to distinguish between different genera of animals, and sometimes between different species. Because collagen preserves better than DNA, this method can be applied successfully in tropical and sub-tropical environments where DNA is unlikely to survive.
Proteins generally preserve better over longer timescales and in harsh environments than DNA does. This means that in the context of megafauna extinctions, proteins may still be preserved where DNA is not.
The scientists ruled out any contaminants and compared the peptide markers they found to reference markers. The collagen in all three samples was well-preserved enough for the team to identify suitable peptide markers for all three species.
Using these markers, the team were able to differentiate Protemnodon from five living genera and one extinct genus of kangaroos. They were also able to distinguish Zygomaturus and Palorchestes from other living and extinct large marsupials, but they couldn't differentiate the two species from each other.
This is not unusual with ZooMS, since changes in collagen accumulate extremely slowly, over millions of years of evolution. Unless further research allows for more specificity, these markers are best used to identify bones at the genus level rather than the species.
However, the ability to tell apart genera from more temperate regions of Sahul does present an opportunity to try to identify bones found in more tropical areas, where closely related species—which are likely to have similar or even the same peptide markers—would have lived. DNA rarely preserves over time in these regions.
By using the newly developed collagen peptide markers, we can begin identifying a larger number of megafauna remains.
Carli Peters et al, Collagen peptide markers for three extinct Australian megafauna species, Frontiers in Mammal Science (2025). DOI: 10.3389/fmamm.2025.1564287
A green bush cricket (Tettigonia cantans) can easily be mistaken for a plant appendage from a distance. Its leafy green hue allows it to blend seamlessly into its surroundings, camouflaging itself in meadows, marshes, and fields, the habitats it calls home. What makes the bush cricket green?
A recent study discovered that the secret to this camouflaging superpower comes from a water-soluble protein called dibilinoxanthinin (DBXN), which binds two distinct pigments—a blue bilin and a yellow lutein—to mimic the color of green foliage closely.
With the help of the genetic sequence of protein and cloning, the researchers found that the protein was a highly fragmented form of vitellogenin, a protein family essential for embryonic development.
Researchers note that DBXN-like proteins were found in other green insects and even in a green spider, hinting at the convergent evolution of this camouflage mechanism.
Nikita A. Egorkin et al, A green dichromophoric protein enabling foliage mimicry in arthropods, Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2502567122
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!