Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 49 minutes ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 22 hours ago. 1 Reply 0 Likes
Pathogen transmission can be modeled in three stages. In Stage 1, the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: Science does not understand energy and the supernatural world because science only studies the material world. Is that why scientists don't believe in magic, manifestation or evil eye? Why flatly…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: Why do I have four horizontal lines on my fingers? My child has the same thing.Krishna: You should have posted pictures of your fingers. I would like to see and then guess what condition it really…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: How strong is the human immune system…Continue
Comment
The Negev desert of southern Israel is renowned for its unique rock art. Since at least the third millennium BCE, the hunters, shepherds, and merchants who roamed the Negev have left thousands of carvings (petroglyphs) on the rocks. These figures are mostly cut into desert varnish: a thin black coating on limestone rock, which forms naturally. Many represent animals such as ibexes, goats, horses, donkeys, and domestic camels, but abstract forms also occur.
Can anything be done to protect the petroglyphs from the slow but destructive work of the observed micro-colonial fungi and lichens? This is unlikely, cautioned the authors.
These natural weathering processes cannot be stopped, but their speed of the weathering process depends heavily on whether and how the climate will change in the future. What we can do is to monitor the microbial communities over time and most importantly, document these valuable works of art in detail.
Diversity of fungi associated to petroglyph sites in the Negev desert, Israel, and their potential role in bioweathering, Frontiers in Fungal Biology (2024). DOI: 10.3389/ffunb.2024.1400380
The advent of computerized trading and fintech platforms has made investing in stocks easier and more accessible to individuals worldwide. This has led to an increase in stock market participation in many countries.
As a result of this spike in investments, fluctuations in the stock market can have a significant effect on the finances of numerous individuals and their families.
Drastic changes in wealth or financial difficulties resulting from these stock market fluctuations could potentially also affect the mental and physical health of investors. In fact, some recent reports have found a correlation between stock market fluctuations and specific physical and psychological issues.
Researchers at the National University of Singapore, Jinan University, Peking University and Sun Yat-sen University recently explored this potential link further, focusing on the relationship between stock market fluctuations and stress-related emergency room visits in China. Their findings, published in Nature Mental Health, unveiled a trend marked by greater visits to emergency rooms by individuals experiencing stress-related mental health issues during periods of stock market volatility.
To study the relationship between stock market fluctuations and emergency room visits in China, this team of researchers statistically analyzed data collected at the largest hospitals in Beijing over the course of three years, spanning from 2009 to 2012. This data, which was specific to emergency room visits for reasons potentially related to stress, was analyzed in conjunction with stock market trends in China during the same period.
Overall, the results of the analyses run by the researchers suggest that stock market shocks had immediate effects on cardiovascular diseases and mental health disorders in the period ranging between 2009 and 2012, as volatility in stock markets was linked to more visits to the emergency room for these stress-related physical and mental issues. As the data used by the researchers was over a decade old, they highlighted the need for additional studies using newer medical and financial data.
The health effects are highly nonlinear, instantaneous and more salient for older people and males.
Sumit Agarwal et al, Associations between stock market fluctuations and stress-related emergency room visits in China, Nature Mental Health (2024). DOI: 10.1038/s44220-024-00267-5
High ambient temperature in pregnancy associated with childhood leukemia
As climate change warms the planet, high ambient temperatures are expected to be more common and intense over the coming decades worldwide.
Researchers have studied how rising temperatures adversely affect human health. A study appearing in journal finds that exposure to high ambient temperatures during pregnancy can have detrimental impact on the health of the offspring.
This is the first study that directly evaluates the association between hot temperatures during pregnancy and the risk of cancer in children.
This study is adding to a growing body of literature that underscores that high ambient temperature not only has immediate health effects, but also may be a cause of future chronic diseases.
Tormod Rogne et al, High ambient temperature in pregnancy and risk of childhood acute lymphoblastic leukaemia: an observational study, The Lancet Planetary Health (2024). DOI: 10.1016/S2542-5196(24)00121-9
**
Neurological disorders, such as trauma, stroke, epilepsy, and various neurodegenerative diseases, often lead to the permanent loss of neurons, causing significant impairments in brain function. Current treatment options are limited, primarily due to the challenge of replacing lost neurons.
Direct neuronal reprogramming, a complex procedure that involves changing the function of one type of cell into another, offers a promising strategy.
In cell culture and in living organisms, glial cells—the non-neuronal cells in the central nervous system—have been successfully transformed into functional neurons. However, the processes involved in this reprogramming are complex and require further understanding. This complexity presents a challenge, but also a motivation, for researchers in the field of neuroscience and regenerative medicine.
Two research teams now explored the molecular mechanisms at play when glial cells are converted to neurons by a single transcription factor.
The findings are published in the journal Nature Neuroscience.
Specifically, the researchers focused on small chemical modifications in the epigenome. The epigenome helps control which genes are active in different cells at different times. For the first time, the teams have now shown how coordinated the epigenome rewiring is, elicited by a single transcription factor.
Using novel methods in epigenome profiling, the researchers identified that a posttranslational modification of the reprogramming neurogenic transcription factor Neurogenin2 profoundly impacts the epigenetic rewiring and neuronal reprogramming. However, the transcription factor alone is not enough to reprogram the glial cells.
In an important discovery, the researchers identified a novel protein, the transcriptional regulator YingYang1, as a key player in this process. YingYang1 is necessary to open up the chromatin for reprogramming, to which end it interacts with the transcription factor.
The protein YingYang1 is crucial for achieving the conversion from astrocytes to neurons.
These findings are important to understand and improve reprogramming of glial cells to neurons, and thus bring us closer to therapeutic solutions.
Allwyn Pereira et al, Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1, Nature Neuroscience (2024). DOI: 10.1038/s41593-024-01677-5
The researchers turned off the vitamin B6 production in both zebrafish and mouse pancreas. The ability of the beta cells to respond to high blood sugar was dramatically reduced in both species.
This indicates that vitamin B6 plays an evolutionarily conserved role in the response to glucose. It is possible that the first responders produce and supply Vitamin B6 to the rest of the beta cells to regulate their activity.
We now know there are specific cells that start the glucose response and that Vitamin B6 is essential for this process.
Vitamin B6 serves as a cofactor for more than a hundred essential enzymes that play critical roles in the cells, ranging from the control of cellular respiration to neurotransmitter production.
There is actually a body of research that shows a correlation between low levels of vitamin B6 and incidence of metabolic disease and type 2 diabetes.
Understanding how Vitamin B6 regulates the beta cells in the pancreas could lead to new insights into the pathology of diabetes and ultimately to new treatments.
Luis Fernando Delgadillo-Silva et al, Optogenetic β cell interrogation in vivo reveals a functional hierarchy directing the Ca 2+ response to glucose supported by vitamin B6, Science Advances (2024). DOI: 10.1126/sciadv.ado4513
Part 2
**
How does our body control blood sugar so precisely?
Researchers found a special group of "first responder" cells in the pancreas that are crucial for triggering blood sugar response.
Their findings were published in the journal Science Advances.
Our bodies need to keep blood sugar levels just right. Too high or too low can be dangerous. This balance is disturbed in diabetes, leading to serious health issues. Beta cells in the pancreas manage this balance by releasing insulin when blood sugar levels rise.
Understanding how beta cells work and coordinate the response to rising blood sugar can ultimately help develop better treatments for diabetes.
To understand the work of the pancreas, the research team turned to zebrafish. This small tropical fish has a pancreas that works similarly to a human one. At the same time, it offers a huge advantage. Researchers can use transparent fish that have no pigment whatsoever and observe the pancreas at work in real-time in the living fish.
The group discovered that a small group of beta cells are more sensitive to sugar levels than the others. These cells respond to glucose quicker than the rest of the cells, so the research team referred to them as "first responder" cells. They initiate the glucose response, which is followed by the remaining "follower cells."
The team wanted to test if first responders are necessary for the follower cells to respond to glucose.
Using transparent fish, the group took advantage of optogenetics, a modern light-based technology that allows to turn single cells on or off with a beam of light.
Turning off the first responder cells lowered the response to the blood sugar of the follower cells. At the same time, when the first responders were selectively activated, the response of the follower cells was enhanced.
The first responders lie at the top of the beta cell hierarchy when it comes to control of the sugar response. Interestingly, only about 10% of the beta-cells act as first responders. It suggests that this small population of cells serves as a control centre for regulating the activity of the rest of the beta cells.
To find out what makes the first responder cells unique, the researchers compared the gene expression of highly glucose-sensitive beta cells to those that are less sensitive. They found that first responders are involved in vitamin B6 production. The first responder cells express a key enzyme involved in transforming the inactive form of dietary vitamin B6 into the form that is active in the cells.
Part1
Many caterpillars are known for their specific food preferences, which they bring with them when they morph into butterflies. For instance, the monarch butterfly only feeds on milkweed plants, while the Lime butterfly feeds on lime leaves. Despite deriving from a common ancestral species, these unique diet preferences are a point of interest for researchers.
In an earlier study by researchers, they demonstrated that when caterpillars fed on leaves outside of their usual diet, they would prefer the smell of that type of plant after a few days. Remarkably, these caterpillars also passed on the acquired smell preference to their offspring.
Such a phenomenon is also seen in nature when caterpillars find themselves on a new food plant when the female butterfly lays eggs on the wrong plant by mistake. The new plant is edible but has a new smell, the caterpillars will learn to prefer this new smell and pass this preference on to their offspring.
This type of inheritance may facilitate host switching and ultimately the formation of new species, each with their own food preferences.
V. Gowri et al, Haemolymph transfusions transfer heritable learned novel odour preferences to naive larvae of Bicyclus anynana butterflies, Biology Letters (2024). DOI: 10.1098/rsbl.2023.0595
Scientists in South Africa have been stunned to discover that termite mounds that are still inhabited in an arid region of the country are more than 30,000 years old, meaning they are the oldest known active termite hills.
Some of the mounds near the Buffels River in Namaqualand were estimated by radiocarbon dating to be 34,000 years old, according to the researchers from Stellenbosch University.
Some fossilized termite mounds have been discovered dating back millions of years. The oldest inhabited mounds before this study were found in Brazil and are around 4,000 years old. They are visible from space.
M.L. Francis et al, Calcareous termite mounds in South Africa are ancient carbon reservoirs, Science of The Total Environment (2024). DOI: 10.1016/j.scitotenv.2024.171760
According to a growing body of evidence, including a recent study, the seemingly separate fields of health sciences and conservation are inextricably linked.
The study, published in the journal Environmental Science & Technology, measured lead levels in the blood of house sparrows (Passer domesticus) in Australian mining towns to accurately predict lead levels in the blood of children living in the same areas.
It shows that wildlife and human health are so intimately linked that when something like lead, which we know is a toxin, gets out into the environment and affects wildlife, it's also affecting people.
The study illustrates the growing relevance of the One Health concept, coalescing aspects of public health, veterinary health and conservation.
Max M. Gillings et al, House Sparrows as Sentinels of Childhood Lead Exposure, Environmental Science & Technology (2024). DOI: 10.1021/acs.est.4c00946
More than seven percent of all deaths in 10 of India's biggest cities are linked to air pollution, a large study said recently, leading researchers to call for action to save tens of thousands of lives a year.
Smog-filled Indian cities including the capital Delhi suffer from some of the world's worst air pollution, choking the lungs of residents and posing a rising threat to health still being revealed by researchers.
For the new study, an Indian-led team looked at the levels of cancer-causing microparticles known as PM2.5 pollutants in the cities of Ahmedabad, Bengaluru, Chennai, Delhi, Hyderabad, Kolkata, Mumbai, Pune, Shimla and Varanasi.
From 2008 to 2019, more than 33,000 deaths a year could be attributed to PM2.5 exposure above the World Health Organization's recommendation of 15 micrograms per cubic meter, the study said.
That represents 7.2 percent of the recorded deaths in those cities during that period, according to the study in The Lancet Planetary Health journal.
India's capital Delhi was the worst offender, with 12,000 annual deaths linked to air pollution -- or 11.5 percent of the total.
But even cities where air pollution is not thought to be as bad -- such as Mumbai, Kolkata and Chennai -- had high death rates, the researchers emphasized.
They called for India's air quality standards to be toughened.
The country's current recommendation is 60 micrograms of PM2.5 per cubic meter, which is four times higher than the WHO's guidelines.
Lowering and enforcing the limit "will save tens of thousands of lives per year", say the researchers.
"Methods for controlling pollution exist and are used elsewhere. They urgently need to be applied in India," they said in a statement.
The WHO says that almost everyone on Earth breathes in more than the recommended amount of air pollution, which can trigger strokes, heart disease, lung cancer and other respiratory diseases.
Jeroen de Bont et al, Ambient air pollution and daily mortality in ten cities of India: a causal modelling study, The Lancet Planetary Health (2024). DOI: 10.1016/S2542-5196(24)00114-1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!