Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 18 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Over the past several days, the world has watched on in shock as wildfires have devastated large parts of Los Angeles.Beyond the obvious destruction—to landscapes, homes, businesses and more—fires at…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
We have all been told to avoid direct sunlight between 12 noon and 3 p.m., seek out shade and put on sunscreen and a hat. Nevertheless, most of us have experienced sunburn at least once. The skin…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
On the east coast of Australia, in tropical North Queensland, lies the Daintree rainforest—a place where the density of trees forms an almost impenetrable mass of green.Stepping into the forest can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 2 Replies 0 Likes
Sometime back a rationalist was killed in Maharashtra (Indian State) for educating people about the truth of witchcraft. We had a discussion on the subject on an online news website. There while…Continue
Comment
An international team of researchers has stumbled upon the first regular molecular fractal in nature. They discovered a microbial enzyme—citrate synthase from a cyanobacterium—that spontaneously assembles into a pattern known as the Sierpinski triangle. Electron microscopy and evolutionary biochemistry studies indicate that this fractal may represent an evolutionary accident.
The study is published in Nature.
Snowflakes, fern leaves, romanesco cauliflower heads: many structures in nature have a certain regularity. Their individual parts resemble the shape of the whole structure. Such shapes, which repeat from the largest to the smallest, are called fractals. But regular fractals that match almost exactly across scales, as in the examples above, are very rare in nature.
Molecules also have a certain regularity. But if you look at them from a great distance, you can no longer see any signs of this. Then you see smooth matter whose features no longer match those of the individual molecules. The degree of fine structure we see depends on our magnification—in contrast to fractals, where self-similarity persists at all scales. In fact, regular fractals at the molecular level are completely unknown in nature till now.
This is somewhat surprising. After all, molecules can assemble themselves into all sorts of wonderful shapes. Scientists have extensive catalogues of self-assembled complex molecular structures. However, there has never been a regular fractal among them. It turns out that almost all regular-looking self-assemblies lead to the kind of regularity that becomes smooth on large scales.
Researchers now discovered a microbial enzyme—citrate synthase from a cyanobacterium—that spontaneously assembles into a regular fractal pattern known as the Sierpiński triangle. This is an infinitely repeating series of triangles made up of smaller triangles.
The protein makes these beautiful triangles and as the fractal grows, we see these larger and larger triangular voids in the middle of them, which is totally unlike any protein assembly we've ever seen before.
Part 1
They studied plastic, paper and plant-based straws obtained in the USA. It showed that paper and plant-based straws contain PFAS (Per- and polyfluoroalkyl substances).
These are fluorine-based chemicals that have remarkable properties in repelling water, grease and pretty much anything. They are widely used in products designed to resist water and oil such as raincoats, furniture, cookware and food packaging.
PFAS are chemically and thermally very stable which means that almost nothing reacts or degrades them. This means they persist in the environment and will do so for thousands of years. For this reason, they have been dubbed ‘forever chemicals’.
They have been found literally everywhere from the Arctic ice to the Amazon rainforest. They also make it into the human body by migrating from packaging into our food and drink.
Once PFAS are in our blood they are associated with a number of health effects such as liver and kidney disease. There is also evidence that PFAS may lead to increased risk of high blood pressure in pregnant ..., and decreased immune response. Some studies show an association of PFAS exposure with kidney and testicular cancer. They have been shown to harm wildlife too.
All the evidence points to paper and plant-based straws having significant PFAS in them. PFAS have also been found in plastic straws but at lower levels. The only material determined to be free of PFAS was stainless steel.
Stainless steel straws are reusable and easy to clean. So I use only them.
Please use only steel straws.
**
Many paper straws tested by scientists contain significant amounts of chemicals that don't biodegrade.
If you have been following the scientific debate on the effect of different types of straw on the environment and human health, you’ll know that the decision whether to use a straw or not is not an easy one.
Pictures of plastic straws causing the death of turtles and other aquatic life were published in national newspapers. Governments scrambled to justify they had let plastic pollution reach such an appalling state of affairs – they singled out plastic straws as something that they could ban. And so they did, ignoring those of us who warned about the unexpected consequences.
A study by a European research group showed there are significant health and environmental risks associated with the pape... that have replaced plastic straws.
Scientists observing the performance of the new paper straws found themselves puzzled by their ability to repel liquids and resist getting soggy. Could there be an additive, they wondered, that might be allowing paper straws to perform so well?
Part 1
The circadian rhythm is defined as physical, mental, and behavioral changes that organisms, such as humans, experience over 24-hour cycles. One of the most famous behaviors impacted by the circadian rhythm is sleep—people tend to feel sleepy at the same time every night. However, it has also been noted that the circadian rhythm can be impacted by the lunar cycle—people have been found to go to bed later and sleep less, for example, on nights before a full moon.
To learn more about the ovarian cycle-controlling mechanism, the research team obtained medical records for over 3,000 women living in Europe and North America, which held data relating to 27,000 ovarian cycles. The team tracked the first day of each cycle for all the women under study. In doing so, they found little correlation between cycle start time and lunar cycling.
The researchers did find something else, though. Many examples of what they describe as phase jumps—where something disturbs the timing of a cycle for a given woman, and the body responds by changing the clock rhythm over several months to bring the cycle back to its original norm. They compare it to how the circadian rhythm reacts to people experiencing jet lag. This, they suggest, indicates that the circadian rhythm is much more likely the mechanism that controls ovarian cycling.
René Ecochard et al, Evidence that the woman's ovarian cycle is driven by an internal circamonthly timing system, Science Advances (2024). DOI: 10.1126/sciadv.adg9646
Part 2
A team of reproductive researchers affiliated with several institutions in France and the U.S. has found that the timing of monthly ovarian cycles in women is mostly likely attributable to the circadian rhythm. In their paper published in the journal Science Advances, the group describes their study of thousands of ovarian cycles as reported by thousands of women in Europe and the U.S. and what they found.
The timing mechanism behind the ovarian cycle has mystified scientists for centuries, though one of the strongest theories has been that it is tied to the lunar cycle*. Charles Darwin suggested that the two became linked back when humans lived near the seashore, where the tides heavily impacted daily scheduling.
And three years ago a team led by Würzburg chronobiologist Charlotte Förster found evidence for women's menstrual cycles temporarily synchronizing with cycles of the moon.
In this new effort, the research team has found little evidence of a lunar impact—they suggest the mechanism most likely controlling the ovarian cycle is the circadian rhythm.
* C. Helfrich-Förster el al., "Women temporarily synchronize their menstrual cycles with the luminance and gravimetric cycles of the Moon," Science
advances (2021). advances.sciencemag.org/lookup … .1126/sciadv.abe1358
Part 1
A research team has unearthed new findings that may help explain the connection between cancer risk and poor diet, as well as common diseases like diabetes, which arise from poor diet. The insights gained from this study hold promise for advancing cancer prevention strategies aimed at promoting healthy aging.
Cancer is caused by the interaction between our genes and factors in our environment, such as diet, exercise, and pollution. How such environmental factors increase cancer risk is not yet very clear, but it is vital to understand the connection if we are to take preventive measures that help us stay healthy longer.
The research team first studied patients who are at a high risk of developing breast or ovarian cancers because they inherit a faulty copy of the cancer gene—BRCA2—from their parents. They demonstrated that cells from such patients were particularly sensitive to the effects of methylglyoxal, which is a chemical produced when our cells break down glucose to create energy.
The study showed that this chemical can cause faults in our DNA that are early warning signs of cancer development.
The team's research also suggested that people who do not inherit a faulty copy of BRCA2 but could experience higher-than-normal levels of methylglyoxal—such as patients with diabetes or pre-diabetes, which are connected with obesity or poor diet—can accumulate similar warning signs indicating a higher risk of developing cancer.
This research suggests that patients with high methylglyoxal levels may have higher cancer risk. Methylglyoxal can be easily detected by a blood test for HbA1C, which could potentially be used as a marker. Furthermore, high methylglyoxal levels can usually be controlled with medicines and a good diet, creating avenues for proactive measures against the initiation of cancer.
Interestingly, the research team's work also revised a longstanding theory about certain cancer-preventing genes. This theory—called the Knudson's 'two-hit' paradigm—was first formulated in 1971, and it was proposed that these genes must be inactivated permanently in our cells before cancer can arise.
The NUS team has now found that methylglyoxal can temporarily inactivate such cancer-preventing genes, suggesting that repeated episodes of poor diet or uncontrolled diabetes can 'add up' over time to increase cancer risk. This new knowledge is likely to be influential in changing the direction of future research in this area.
Li Ren Kong et al, A glycolytic metabolite bypasses "two-hit" tumor suppression by BRCA2, Cell (2024). DOI: 10.1016/j.cell.2024.03.006
Scientists wanted to know how this inflammatory process was damaging the brain. They Researchers were particularly interested in molecular aggregates, called cofilactin rods (CARs), that appear after a stroke. CARs form when two proteins, called cofilin and actin, that normally maintain neurites, break loose, forming messy clumps.
CARs are known to form in response to a chemical called superoxide, which immune cells release when the brain is inflamed.
To get a closer look at this process, the researchers stimulated inflammation in a part of the mouse brain that controls movement. They expected that neurons would die and the mice would have trouble moving.
The mice did struggle to move, but when the researchers looked at their brain tissue under a microscope, they were surprised to see that only the neurites had withered away, leaving the neurons isolated like stars in the night sky. The loss of these connections was enough to rob the mice of some of their motor coordination.
The scientists then tried reducing the amount of either superoxide or cofilin, and treated the brain with the same inflammatory substance. Under these conditions, fewer CARs formed, and the neurites survived. The mice also retained their coordination.
They had discovered a new pathway: inflammation caused immune cells to release superoxide, pulling cofilin and actin out of neurites and making CARs. Neurites died, and the disconnected brain malfunctioned.
Many neurological diseases involve inflammation, including multiple sclerosis, traumatic brain injury, and amyotrophic lateral sclerosis (ALS).
Now that scientists understand it better, they can design therapies to interrupt this inflammatory pathway. Stroke patients, for example, could be treated early on with anti-inflammatory agents to shield neurites from damage and preserve cognition.
Gökhan Uruk et al, Cofilactin rod formation mediates inflammation-induced neurite degeneration, Cell Reports (2024). DOI: 10.1016/j.celrep.2024.113914
Part 2
Whether reeling from a sudden stroke or buckling under the sustained assault of Alzheimer's, the brain becomes inflamed, leading to cognitive problems and even death.
Scientists have known for many years that severe inflammation can kill the brain's neurons. Now, researchers have discovered that even subtle inflammation damages the brain.
Instead of killing neurons outright, however, relatively mild inflammation only destroys the arm-like projections, called neurites, that wire neurons together. These connections are vital for everything the brain does, including learning and memory.
The findings, published last month in Cell Reports, describe in detail a new degenerative pathway that scientists can now try to disrupt. This could help stem the damage from common neurological diseases.
There are several exciting drugs now entering clinical use that interrupt these inflammatory processes, and now we know to look at their effects on neurites.
Not too far off, this could have a big impact on helping patients.
Inflammation is the body's first line of defense when something goes wrong. It rushes blood to an injured area, bathing it with immune cells that release chemicals to kill pathogens.
Tiny AI-trained robots demonstrate soccer skills
Don't depend on old Biology text books and theories for knowledge. Why Biology, all science is changing rapidly and progressing with rocket speed.
Each day I read a large amount of stories that are rewriting the old science textbooks. If you don't get updated, you remain a creature living under the big rock - very ancient, half-blind, half-mute and half-minded!
Science is not wine. It doesn't get better as it ages, it gets stale instead.
Science is like a running river, if you don't move as speedily as it does, you rot like an old log and decay!
(This ‘s my reply to a person who complained that my reports are contradicting Biology text books!)
© 2025 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!