Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 21 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Over the past several days, the world has watched on in shock as wildfires have devastated large parts of Los Angeles.Beyond the obvious destruction—to landscapes, homes, businesses and more—fires at…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
We have all been told to avoid direct sunlight between 12 noon and 3 p.m., seek out shade and put on sunscreen and a hat. Nevertheless, most of us have experienced sunburn at least once. The skin…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
On the east coast of Australia, in tropical North Queensland, lies the Daintree rainforest—a place where the density of trees forms an almost impenetrable mass of green.Stepping into the forest can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 2 Replies 0 Likes
Sometime back a rationalist was killed in Maharashtra (Indian State) for educating people about the truth of witchcraft. We had a discussion on the subject on an online news website. There while…Continue
Comment
Researchers are developing a technique that uses the special synchrotron X-ray light from the Swiss Light Source SLS to non-destructively digitize recordings from high-value historic audio tapes—including treasures from the Montreux Jazz Festival archive, such as a rare recording of the King of the Blues, B.B. King.
Magnetic tapes have almost completely disappeared from our lives and now only enjoy a nostalgic niche existence. However, significant quantities of these analog magnetic media are still stored in the archives of sound studios, radio and TV stations, museums, and private collections worldwide. Digitizing these tapes is an ongoing challenge as well as a race against time, as the tapes degrade and eventually become unplayable. Physicists and experts in nanomagnetism, are developing a method to non-destructively digitize degraded audio tapes in the highest quality using X-ray light. To achieve this goal, they have been collaborating with the Swiss National Sound Archives, which has produced custom-made reference recordings and provided audio engineering know-how. Now, a partnership with the Montreux Jazz Digital Project will help to further develop and test the method.The classic version of the game of 'chicken' pits two drivers against each other on a collision course.
To carry out their experiments, Israel, Cherki and their colleagues used a laboratory-based adaptation of the chicken game, known as the "intergroup chicken game." This version of the game has the same underlying rules, but with players divided into groups that are pitted against each other.
The researchers' experiment was double-blind and included a placebo condition. They recruited 204 participants and divided them into groups of eight or 12, each of which contained an equal number of males and females.
These groups of participants completed 30 rounds of the intergroup chicken game and at the beginning of each experimental session, participants were asked to self-administer either a placebo gas or oxytocin. Notably, neither the participants nor the experimenters were aware of what was being inhaled, which eliminated biases and prevented prior knowledge of what was administered during each trial from impacting the results.
One of the most notable observations of this study was that the interaction between oxytocin and testosterone greatly influenced the behavior of male participants. Contrarily, the interplay between these two hormones did not appear to impact the behavior of female participants.
Researchers observed that under placebo conditions, elevations in testosterone levels corresponded to heightened aggression towards outgroups. However, the administration of internasal oxytocin cancelled out this association, suggesting a regulatory role for oxytocin in moderating testosterone-induced aggression within intergroup dynamics.
Overall, the recent findings gathered by this team of researchers suggest that there could be notable sex differences in the dynamics underlying parochial altruism in intergroup conflict. In fact, they showed no substantial link between testosterone reactivity and outgroup aggression in females.
This underscores the importance of considering sex-specific effects when examining the neurobiological underpinnings of social behaviour.
Boaz R. Cherki et al, Intranasal oxytocin interacts with testosterone reactivity to modulate parochial altruism, Communications Psychology (2024). DOI: 10.1038/s44271-024-00066-9
Part 3
**
Previous research, suggested independent roles of oxytocin and testosterone—hormones that are associated with intergroup relations and cooperation-aggression—in shaping behaviour during intergroup conflict.
How the two hormones interact, had yet to be tested. These hormones exert contrasting effects on various social behaviors, leading us to hypothesize that their combined influence might hold the key to understanding intergroup dynamics. This study filled that gap.
The primary objective of the recent work by researchers was to better understand how the interaction between oxytocin and testosterone influences behavior in the context of intergroup conflict. While many past studies focusing on this topic only included male participants, the researchers decided to also include female participants, as this would allow them to discover any sex differences that may exist.
To model intergroup conflict in an experimental setting, the researchers used an adaptation of the game commonly referred to as "chicken." This game has often been portrayed in popular media, including in the movies "Rebel without a Cause," "Footloose" and "Grease," and is also used in political science to describe elements of conflict between nations, such as the nuclear brinkmanship of the Cuban Missile crisis.
Part 2
Over the past decades, numerous studies have investigated the neural and cognitive processes underpinning intergroup conflict, as this could help to explain what fuels belligerent behavior, political clashes, and wars. While these works gathered some interesting findings, much about these processes remains poorly understood until now.
Researchers recently carried out a study specifically exploring how the hormones oxytocin and testosterone modulate people's behavior during an experimental game modeling intergroup conflict.
Their findings, published in Communications Psychology, suggest that oxytocin interacts with men's testosterone reactivity to modulate parochial altruism (i.e., behavior that benefits the group one belongs to, while negatively impacting competing groups).
Individuals regularly carry out actions which are costly to themselves, but advance the interests of their own group, often even at the expense of rival groups.
We see examples of such behavior all the time, including sports rivalries (playing injured), political partisanship (voting along party lines), and in extreme cases ethnic, religious, or national conflicts.
"Evolutionary theories, going back to Darwin, suggest that such acts of parochial altruism—the favoring of one's ingroup—emerged during human ancestry because they provided an advantage for group survival."
The researchers set out to study how individuals make decisions in a controlled laboratory setting modeling intergroup conflict, as this could shed light on the dynamics driving behaviors commonly observed outside laboratory settings.
Past social psychology research consistently found that people's social regard (i.e., their willingness to trust others, empathize with them and behave altruistically) is greatly influenced by their belonging to specific groups. Nonetheless, the biological underpinnings of these group-driven behaviors are yet to be clearly elucidated.
Part 1
Though our visual temporal resolution is quite stable from day to day in general, a post-hoc analysis did suggest that there may be slightly more variation over time within females than within males.
We don't yet know how this variation in visual temporal resolution might affect our day-to-day lives, but scientists think that individual differences in perception speed might become apparent in high-speed situations where one might need to locate or track fast-moving objects, such as in ball sports, or in situations where visual scenes change rapidly, such as in competitive gaming, or escaping a speeding vehicle.
This suggests that some people may have an advantage over others before they have even picked up a racquet and hit a tennis ball, or grabbed a controller and jumped into some fantasy world online.
What is really interesting about this project is how a zoologist, a geneticist and a psychologist can all find different angles to this work. For me as a zoologist the consequences of variation in visual perception likely has profound implications for how predators and prey interact, with various arms-races existing for investment in brain processing power and clever strategies to exploit weaknesses in one's enemy.
Because we only have access to our own subjective experience, we might naively expect that everyone else perceives the world in the same way we do. Examples like color blindness show that isn't always true, but there are many less well known ways that perception can vary too.
"This study characterizes one such difference—in the 'frame rate' of our visual systems. Some people really do seem to see the world faster than others."
Now if I can read 80 research papers per day, and can write 50 reviews and articles per day, or can answer 10 tough questions per day, remember, there is nothing wrong with you.
Our worlds are just different from each other! :)
PLoS ONE (2024). DOI: 10.1371/journal.pone.0298007
Using a blink-and-you'll-miss-it experiment, researchers from Trinity College Dublin have discovered that individuals differ widely in the rate at which they perceive visual signals. Some people perceive a rapidly changing visual cue at frequencies that others cannot, which means some access more visual information per timeframe than others.
This discovery suggests some people have an innate advantage in certain settings where response time is crucial, such as in ball sports, or in competitive gaming.
The rate with which we perceive the world is known as our "temporal resolution," and in many ways it is similar to the refresh rate of a computer monitor.
The researchers found that there is considerable variation among people in their temporal resolution, meaning some people effectively see more "images per second" than others.
To quantify this, the scientists used the "critical flicker fusion threshold," a measure for the maximum frequency at which an individual can perceive a flickering light source.
If the light source flickers above a person's threshold, they will not be able to see that it is flickering, and instead see the light as steady. Some participants in the experiment indicated they saw the light as completely still when it was in fact flashing about 35 times per second, while others were still able to perceive the flashing at rates of over 60 times per second.
The researchers also measured temporal resolution on multiple occasions in the same participants and found that even though there is significant variation among individuals, the trait appears to be quite stable over time 'within' individuals.
Part 1
Central to the spectacle of T Coronae Borealis is the white dwarf, a stellar remnant that offers profound insights into the life cycles of stars.
White dwarfs are the end products of stars that originally had masses up to eight times that of the Sun but ended their lives in a relatively peaceful manner, without exploding as supernovae.
These stellar cores are fascinating for several reasons:
In summary, the study of T Coronae Borealis and white dwarfs opens a window into the complex processes governing stellar evolution.
Part3
The most striking difference lies in their scale and the energy released. Supernovae are among the universe’s most energetic events, outshining entire galaxies and releasing vast amounts of energy. Novae, while still bright and powerful, are far less energetic and only cause a temporary increase in brightness.
Supernovae are relatively rare events, occurring about once every 50 years in a galaxy the size of the Milky Way. Novae, on the other hand, are more common, with several occurring in our galaxy each year. Despite their rarity, supernovae can often be seen from greater distances due to their immense brightness.
The cosmos is a stage for some of the most spectacular and powerful events known to science. Among these, nova and supernova explosions stand out for their brilliance and the fundamental roles they play in the universe’s lifecycle.
Despite the similarity in their names, novae and supernovae differ vastly in their origins, mechanisms, and consequences. This article demystifies these cosmic phenomena, highlighting their distinct characteristics.
As discussed above, a nova occurs in a binary star system, where a white dwarf and a companion star orbit closely. The white dwarf, a dense remnant of a star that has exhausted its nuclear fuel, pulls material — primarily hydrogen — from its companion.
This material accumulates on the white dwarf’s surface, eventually igniting in a thermonuclear explosion. The explosion causes the white dwarf to brighten significantly, but it does not result in the star’s destruction. Instead, the process may repeat if the white dwarf continues to accrete material.
In contrast, a supernova is a cataclysmic event marking the death of a star. Supernovae can occur in one of two primary ways:
Core-Collapse Supernova: This type happens at the end of a massive star’s life cycle. When the star’s core runs out of nuclear fuel, it can no longer support the outer layers against gravity. The core collapses, resulting in a massive explosion that obliterates the star.
Type Ia Supernova: This type involves a binary system where a white dwarf accretes material from a companion star, similar to a nova. However, in this case, the white dwarf reaches a critical mass (Chandrasekhar limit), leading to a runaway nuclear reaction that completely destroys the white dwarf.
Sometime between now and September, a massive explosion 3,000 light years from Earth will flare up in the night sky, giving amateur astronomers a once-in-a-lifetime chance to witness this space oddity.
The binary star system in the constellation Corona Borealis—"northern crown"—is normally too dim to see with the naked eye.
But every 80 years or so, exchanges between its two stars, which are locked in a deadly embrace, spark a runaway nuclear explosion.
The light from the blast travels through the cosmos and makes it appear as if a new star—as bright as the North Star, according to NASA—has suddenly just popped up in our night sky for a few days.
It will be at least the third time that humans have witnessed this event, which was first discovered by Irish polymath John Birmingham in 1866, then reappeared in 1946.
There are only around 10 recurring novas in the Milky Way and surrounding galaxies. Normal novas explode "maybe every 100,000 years". But recurrent novas repeat their outbursts on a human timeline because of a peculiar relationship between their two stars.
The other is a white dwarf, a later stage in the death of a star, after all the atmosphere has blown away and only the incredibly dense core remains.
Their size disparity is so huge that it takes T Coronae Borealis's white dwarf 227 days to orbit its red giant.
The two are so close that matter being ejected by the red giant collects near the surface of the white dwarf.
Once the mass roughly of Earth has built up on the white dwarf—which takes around 80 years—it heats up enough to kickstart a runaway thermonuclear reaction. This ends up in a "big explosion and within a few seconds the temperature goes up 100-200 million degrees Celsius".
But you do not need advanced technology to witness this rare event—whenever it may happen. You simply have to go out and look in the direction of the Corona Borealis .... and you can see it with your own naked eyes!
This particular star explosion is unique for its brief yet intense display, completing its cycle in merely a week.
Source: AFP and other news agencies
© 2025 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!