Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 2 hours ago. 1 Reply 0 Likes
The problem is simple: it's hard to know whether a photo's real or not anymore. Photo manipulation tools are so good, so common and easy to use, that a picture's truthfulness is no longer…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 12 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
As we age, it's common to notice posture changes: shoulders rounding, head leaning forward, back starting to curve. You might associate this with older adults and wonder: will this happen to me? Can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Live and on-demand video constituted an estimated …Continue
Comment
Deep in the Earth's mantle, where the rock becomes viscous due to high pressure, displacements occur over long periods of time. And there are also heat flows in the liquid metal of Earth's outer core, which are responsible for both generating the Earth's magnetic field and leading to shifts in mass.
In the most comprehensive modeling to date, researchers have now shown how polar motion results from individual processes in the core, in the mantle and from the climate at the surface.
One finding in particular that stands out in their study is that the processes on and in the Earth are interconnected and influence each other. Climate change is causing the Earth's axis of rotation to move, and it appears that the feedback from the conservation of angular momentum is also changing the dynamics of the Earth's core.
Ongoing climate change could therefore even be affecting processes deep inside the Earth and have a greater reach than previously assumed. However, there is little cause for concern, as these effects are minor and it's unlikely that they pose a risk.
Implications for space travel
Even if the Earth's rotation is changing only slowly, this effect has to be taken into account when navigating in space—for example, when sending a space probe to land on another planet. Even a slight deviation of just one centimeter on Earth can grow to a deviation of hundreds of meters over the huge distances involved.
"Otherwise, it won't be possible to land in a specific crater on Mars".
Kiani Shahvandi, Mostafa, The increasingly dominant role of climate change on length of day variations, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2406930121. doi.org/10.1073/pnas.2406930121
Mostafa Kiani Shahvandi et al, Contributions of core, mantle and climatological processes to Earth's polar motion, Nature Geoscience (2024). DOI: 10.1038/s41561-024-01478-2. www.nature.com/articles/s41561-024-01478-2
Part 2
For the first time, researchers have been able to fully explain the various causes of long-term polar motion in the most comprehensive modeling to date, using AI methods. Their model and their observations show that climate change and global warming will have a greater influence on the Earth's rotational speed than the effect of the moon, which has determined the increase in the length of the day for billions of years.
Climate change is causing the ice masses in Greenland and Antarctica to melt. Water from the polar regions is flowing into the world's oceans—and especially into the equatorial region.
This means that a shift in mass is taking place, and this is affecting the Earth's rotation.
It's like when a figure skater does a pirouette, first holding her arms close to her body and then stretching them out. The initially fast rotation becomes slower because the masses move away from the axis of rotation, increasing physical inertia.
In physics, we speak of the law of conservation of angular momentum, and this same law also governs the Earth's rotation. If the Earth turns more slowly, the days get longer. Climate change is therefore also altering the length of the day on Earth, albeit only minimally for now.
Another cause of this slowdown is tidal friction, which is triggered by the moon. However, the new study comes to a surprising conclusion: if humans continue to emit more greenhouse gases and the Earth warms up accordingly, this would ultimately have a greater influence on the Earth's rotational speed than the effect of the moon, which has determined the increase in the length of the day for billions of years.
We humans have a greater impact on our planet than we realize and this naturally places great responsibility on us for the future of our planet.
However, shifts in mass on the Earth's surface and in its interior caused by the melting ice not only change the Earth's rotational speed and the length of day: as the researchers show in Nature Geoscience, they also alter the axis of rotation. This means that the points where the axis of rotation actually meets the Earth's surface move.
Researchers can observe this polar motion, which, over a longer timeframe, comes to some ten meters per hundred years. It's not only the melting of the ice sheets that plays a role here, but also movements taking place in the Earth's interior.
Part 1
Using epigenetic techniques, the researchers were able to track how these three key histone modifications changed as cells transitioned through different stages of development. The observations gathered in their experiments allowed them to identify dynamic epigenetic "switches" that regulate the fate of individual cells.
They discovered that the switching of repressive and activating histone modifications happens before cell fate decisions.
Additionally, they demonstrated that removing H3K27me3 at the neuroectoderm stage disrupts fate restriction, leading to aberrant cell identities.
Fides Zenk et al, Single-cell epigenomic reconstruction of developmental trajectories from pluripotency in human neural organoid systems, Nature Neuroscience (2024). DOI: 10.1038/s41593-024-01652-0
Part 2
Individual cells in the human body develop progressively over time, ultimately becoming specialized in specific functions. This process, known as cell differentiation or specialization, is central to the formation of distinct cell populations that serve different purposes.
Past studies suggest that the fate of cells is also modulated by epigenetic mechanisms (i.e., interactions between genes and environmental factors). These epigenetic mechanisms, however, have so far been proved difficult to pinpoint.
Researchers recently carried out a study aimed at exploring the epigenetic processes influencing the developmental trajectories of individual cells, using human brain and retina organoids derived from pluripotent stem cells.
Their paper, published in Nature Neuroscience, outlines a single-cell epigenome-wide map that could aid the study of human cell fate determination.
This paper was inspired by the need to better understand the epigenetic mechanisms that regulate cell fate decisions during human brain and retina development.
The primary objective was to create a comprehensive single-cell epigenomic map that could capture the transitions from pluripotent stem cells to differentiated neural cells.
To study the epigenetic mechanisms underpinning the diversification of human cells, the researchers carried out experiments on human brain and retina organoids, three-dimensional (3D), miniaturized versions of human organs created in laboratory settings, using pluripotent stem cells.
Part 1
The Exact Part of The Brain Behind Your Curiosity
Being curious is a quintessential part of being human, driving us to learn and adapt to new environments. For the first time, scientists have pinpointed the spot in the brain where curiosity emerges.
The discovery was made by researchers who used functional magnetic resonance imaging (fMRI) scans to measure oxygen levels in different parts of the brain, indicating how busy each region is at any one time.
Knowing where curiosity originates could help us understand more about how human beings tick, and potentially lead to therapies for conditions where curiosity is lacking, such as chronic depression.
This is really the first time we can link the subjective feeling of curiosity about information to the way your brain represents that information.
In the experiments conducted on curiosity and fMRI scans, notable activity was spotted in three regions: the the occipitotemporal cortex (linked to vision and object recognition), the ventromedial prefrontal cortex or vmPFC (which manages perceptions of value and confidence), and the anterior cingulate cortex (used for information gathering).
The vmPFC appears to act as a sort of neurological bridge between levels of certainty recorded by the occipitotemporal cortex, and subjective feelings of curiosity – almost like a trigger telling us when to be curious. The less confident the volunteers were about the image subject, the more curious they were about it.
These results illuminate how perceptual input is transformed by successive neural representations to ultimately evoke a feeling of curiosity," write the researchers in their published paper.
https://www.jneurosci.org/content/early/2024/07/04/JNEUROSCI.0974-2...
LUCA, they found, was probably very similar to a prokaryote, a single-celled organism that doesn't have a nucleus. It was obviously not reliant on oxygen, since there would have been little oxygen available; that's not unexpected for a microbe. As such, its metabolic processes probably produced acetate.
But there was something else interesting. LUCA appears not to have been alone.
This study showed that LUCA was a complex organism, not too different from modern prokaryotes.
But what is really interesting is that it's clear it possessed an early immune system, showing that even by 4.2 billion years ago, our ancestor was engaging in an arms race with viruses.
Because its metabolic processes would have produced waste products that could be used by other lifeforms, they could have emerged not long after LUCA did.
This implies that it takes relatively little time for a full ecosystem to emerge in the evolutionary history of a planet – a finding that has implications far beyond our own little pale blue dot.
https://www.nature.com/articles/s41559-024-02461-1
Part 2
**
Once upon a time, Earth was barren. Everything changed when, somehow, out of the chemistry available early in our planet's history, something started squirming – processing available matter to survive, to breed, to thrive.
What that something was, and when it first squirmed, have been burning questions that have puzzled humanity probably for as long as we've been able to ask "what am I?"
Now, a new study has found some answers – and life emerged surprisingly early.
Earth, for context, is around 4.5 billion years old. That means life first emerged when the planet was still practically a newborn.
Back when it was new, Earth was a very different place, with an atmosphere that we would find extremely toxic today. Oxygen, in the amount current life seems to need, didn't emerge until relatively late in the planet's evolutionary history, only as early as around 3 billion years ago.
But life emerged prior to that; we have fossils of microbes from 3.48 billion years ago. And scientists think that conditions on Earth may have been stable enough to support life from around 4.3 billion years ago.
But our planet is subject to erosional, geological, and organic processes that make evidence of that life, from that time, almost impossible to find.
a team of scientists went looking somewhere else: in genomes from living organisms, and the fossil record.
Their study is based on something called a molecular clock. Basically, we can estimate the rate at which mutations occur, and count the number to determine how much time has passed since the organisms in question diverged from common ancestors.
All organisms, from the humblest microbe to the mightiest fungus, have some things in common. There's a universal genetic code. The way we make proteins is the same. There's an almost universal set of 20 amino acids that are all oriented the same way. And all living organisms use adenosine triphosphate (ATP) as a source of energy in their cells.
Researchers worked out, based on these similarities and differences, how long it has been since LUCA's successors started to diverge. And, using complex evolutionary modeling, they were able to learn more about LUCA itself – what it was, and how it survived on an Earth so very inhospitable to its descendants.
Part1
Urban animals modify their behaviors, learning, and problem-solving skills to cope with urban challenges, reflecting a dynamic response to urban landscapes," they write. "Similarly, humans alter their urban spaces, influencing wildlife behavior and evolution. This reciprocal adaptation between humans and wildlife is fundamental to understanding co-culture."
----
Future research is also needed to examine the possibility of cultural and genetic co-evolution—the idea that species' cultures and genomes are evolving in concert. A key question, the researchers say, is "In the context of co-culture, how do cultural adaptations influence genetic evolution, and vice versa, across different species and environments?"
----
Cédric Sueur et al, Co-cultures: exploring interspecies culture among humans and other animals, Trends in Ecology & Evolution (2024). DOI: 10.1016/j.tree.2024.05.011
Part 2
Cooperative hunting, resource sharing, and using the same signals to communicate the same information—these are all examples of cultural sharing that have been observed between distinct animal species. In an opinion piece published June 19 in the journal Trends in Ecology & Evolution, researchers introduce the term "co-culture" to describe cultural sharing between animal species. These relationships are mutual and go beyond one species watching and mimicking another species' behavior—in co-cultures, both species influence each other in substantial ways.
Co-culture challenges the notion of species-specific culture, underscoring the complexity and interconnectedness of human and animal societies, and between animal societies," write the authors.
These cross-species interactions result in behavioral adaptations and preferences that are not just incidental but represent a form of convergent evolution.
Co-cultures have been observed between humans and nonhuman animals—for example, between humans and honeyguides in Tanzania and Mozambique, where the birds lead humans to honeybee nests. They are also evident between different species of nonhuman animals—for example, cooperative scavenging between ravens and wolves, cooperative hunting between false killer whales and bottlenose dolphins, and signal sharing between distinct species of tamarin. Ultimately, this inter-species sharing of culture could drive evolution, the researchers say.
"Cultural behaviors that enhance survival or reproductive success in a particular setting can lead to changes in population habits that, over time, could drive genetic selection," they write.
To extend our understanding of co-cultures, the researchers say that future studies could start by investigating wild animals in urban environments.
Part 1
A study led by researchers at the American Cancer Society (ACS) finds four in 10 cancer cases and about one-half of all cancer deaths in adults 30 years old and older could be attributed to modifiable risk factors, including cigarette smoking, excess body weight, alcohol consumption, physical inactivity, diet, and infections.
Cigarette smoking was by far the leading risk factor, contributing to nearly 20% of all cancer cases and 30% of all cancer deaths. The findings are published in the journal CA: A Cancer Journal for Clinicians.
The risk factors included cigarette smoking (current and former smoking); secondhand smoke; excess body weight; alcohol consumption; consumption of red and processed meat; low consumption of fruits and vegetables, dietary fiber, and dietary calcium; physical inactivity; ultraviolet (UV) radiation; and infection with Epstein-Barr virus (EBV), Helicobacter pylori, hepatitis B virus (HBV), hepatitis C virus (HCV), human herpes virus-8 (HHV-8; also called Kaposi sarcoma herpesvirus), human immunodeficiency virus (HIV), and human papillomavirus (HPV).
CA: A Cancer Journal for Clinicians (2024)
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!