Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
Over the past several days, the world has watched on in shock as wildfires have devastated large parts of Los Angeles.Beyond the obvious destruction—to landscapes, homes, businesses and more—fires at…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
We have all been told to avoid direct sunlight between 12 noon and 3 p.m., seek out shade and put on sunscreen and a hat. Nevertheless, most of us have experienced sunburn at least once. The skin…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
On the east coast of Australia, in tropical North Queensland, lies the Daintree rainforest—a place where the density of trees forms an almost impenetrable mass of green.Stepping into the forest can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 2 Replies 0 Likes
Sometime back a rationalist was killed in Maharashtra (Indian State) for educating people about the truth of witchcraft. We had a discussion on the subject on an online news website. There while…Continue
Comment
If they're not removed in our wastewater treatment plants, [PFAS] get into our rivers, streams, and groundwater, which are commonly used for drinking water production. Around 50% of our rivers and streams contain measurable PFAS concentrations.
According to a 2020 study published in Science by the Environmental Working Group, an estimated 200 million Americans are served by water systems that contain PFAS. And it's not just public systems—a 2023 study by the U.S. Geological Survey found that approximately 20% of private wells are contaminated.
These compounds are now so ubiquitous, that an estimated 98% of the U.S. population has detectable concentrations in their blood. That's concerning, since studies have shown that exposure to some PFAS may be linked to harmful health effects, both in animals and humans.
We know today that even very low concentrations can impact the reproductive system, [have] developmental effects, increase risk of certain cancers, reduce immune response, as well as increase cholesterol levels.
The Environmental Protection Agency also links the compounds to thyroid disorders, obesity, and asthma.
Individuals who may have had high exposure to PFAS—in firefighting or chemical manufacturing industries, for example—should consider blood testing
Part 2
Per- and poly-fluoroalkyl substances (PFAS)—also known as "forever chemicals"—are everywhere. Created in the 1940s, these synthetic compounds are an unseen ingredient in many items that we use in our daily lives, like cleaning products, food packaging, nonstick cookware, cosmetics, personal care items like dental floss, water-repellent clothing, as well as stain-resistant carpets and upholstery. Since the 1970s, they have also been used in firefighting foams and by the military.
Food is another potential source. Unfortunately, PFAS are also present in biosolids which are used as agricultural fertilizer, creating a pathway from contaminated soil to produce in the grocery store.
Because of their longevity and resistance to disintegration—a characteristic born of their carbon-fluorine chemical bonds—PFAS can last thousands of years. These "attributes also make them very resistant to degradation in our treatment systems.
The most common method of destroying PFAS is incineration, but some studies indicate that this fails to eliminate all the chemicals, and instead releases the remaining pollution into the air.
In water treatment systems, the main methods for destroying PFAS are reverse osmosis, activated carbon, and ion-exchange resins—but these technologies are costly. Other methods include supercritical water oxidation, plasma reactors, and most recently, sodium hydroxide (lye) and dimethyl sulfoxide, chemicals used in soap and as a medication for bladder pain syndrome, respectively.
But when items containing PFAS inevitably reach landfills, the compounds leach into the environment. And every day, people flush PFA-laden products—like shampoo, cleaning liquids, even some toilet papers—down the drain.
Part 1
Environmentalists and health experts across the world have been increasingly sounding the alarm about forever chemicals.
On Thursday, French MP Nicolas Thierry will introduce a bill that—if passed—would ban non-essential PFAS in France from 2025.
The European Union is also considering a Europe-wide ban on PFAS from as early as 2026.
For people at home, it is nearly impossible to avoid consuming miniscule amounts of PFAS.
But experts recommend reducing contact with non-stick cookware and grease-proof food packaging such as fast food wrappers.
Drinking filtered or bottled water and storing leftovers in glass—not plastic—containers could also help.
Source: AFP and other news agencies
Part 3
**
More broadly, observational studies have suggested that exposure to PFAS chemicals is associated with an increased rate of cancer, obesity, thyroid, liver and kidney disease, higher cholesterol, low birth weight, infertility and even a lower response to vaccines.
But such observational research cannot prove that the chemicals directly cause these health problems.
And the level of risk can vary greatly depending on the level of PFAS people are exposed to—almost everyone on Earth is believed to have at least a little PFAS in their bodies.
According to the IARC, most at risk for serious PFAS exposure are people who directly work with the chemicals while making products.
Exactly what level of PFAS exposure is hazardous to health has been a matter of debate.
Previously, guidelines in numerous countries ruled that having less than 100 nanogrammes of PFAS per liter of tap water was enough to protect health.
Last year, a media investigation found PFAS levels over 100 nanogrammes per liter at 2,100 sites across Europe and the UK.
The level soared over 10,000 nanogrammes at 300 of the sites, according to the investigation carried out by 16 newsrooms.
Further complicating the ability of research to comprehend the health effects of PFAS is that new compounds are still being developed.
As manufacturers phase out compounds identified as potentially hazardous, they sometimes simply replace it with another member of the PFAS family that has been studied less, researchers have warned.
Part 2
Invisible, omnipresent "forever chemicals" have been linked to a wide range of serious effects on human health, prompting growing calls for them to be banned.
While there is firm evidence that at least one of the more than 4,000 human-made chemicals called PFAS causes cancer, researchers are still attempting to fully understand their broader impact on health.
Here is what we know so far.
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that were first developed in the 1940s to withstand intense heat and repel water and grease. They have since been used in a vast range of household and industrial products including food packaging, make-up, stain-proof fabric, non-stick pots and pans and foam used to fight fires. Because PFAS take an extremely long time to break down—earning them the nickname "forever chemicals"—over the years they have seeped into the soil and groundwater, getting into our food chain and drinking water in the process. These chemicals have now been detected virtually everywhere on Earth, from the top of Mount Everest to inside human blood and brains.
The two most researched PFAS compounds have already been banned or restricted in many countries, though they remain detectable throughout the environment.
Perfluorooctanoic acid (PFOA), which was once used to make the non-stick cookware coating Teflon, was in December classified as "carcinogenic to humans" by the International Agency for Research on Cancer (IARC).
The World Health Organization agency said there is "sufficient evidence" that PFOA gave animals cancer during experiments, as well as "limited evidence" of renal cell and testicular cancer in humans.
Perfluorooctane sulfonic acid (PFOS)—once the key ingredient in the Scotchgard fabric protector—was meanwhile ruled "possibly carcinogenic to humans".
There was limited proof of cancer in animals but "inadequate evidence regarding cancer in humans", the IARC said.
Part 1
With their experience, scientists can tell the difference. Since many, but not all, insects emit sound, we should be able train AI models to identify them by the unique sounds they make.
In fact, such training is already happening.
Most of the models need huge sets of data to train on, and while they are getting better at working with smaller data sets, they remain data-intensive tools. Furthermore, not all insects emit sounds—such as aphids. And very noisy contexts, like an urban environment, can easily confuse sound-based monitoring efforts.
Automated bioacoustics is a key tool in a multifaceted toolkit that we can use to effectively monitor these important organisms all over the world.
From buzzes to bytes: A systematic review of automated bioacoustics models used to detect, classify, and monitor insects, Journal of Applied Ecology (2024). DOI: 10.1111/1365-2664.14630. besjournals.onlinelibrary.wile … 1111/1365-2664.14630
Part 2
Recent research evaluates how well machine learning can identify different insect species by their sound, from malaria-carrying mosquitoes and grain-hungry weevils to crop-pollinating bees and sap-sucking cicadas.
Listening in on the insect world gives us a way to monitor how populations of insects are shifting, and so can tell us about the overall health of the environment. The study, published in the Journal of Applied Ecology, suggests that machine and deep learning are becoming the gold standards for automated bioacoustics modeling, and that ecologists and machine-learning experts can fruitfully work together to develop the technology's full potential.
Insects rule the world. Some are disease vectors and pests, while others pollinate nutritious crops and cycle nutrients. They're the foundation of ecosystems around the world, being food for animals ranging from birds and fishes to bears and humans. Everywhere we look, there are insects, but it's difficult to get a sense of how their populations are changing.
Indeed, in the age of chemical pesticides, climate change and other environmental stressors, insect populations are changing drastically. Some species—like the pollinators that are annually responsible for ecosystem services estimated at well over $200 billion worldwide—seem to be crashing, while others, like mosquitoes that can carry malaria, dengue and other diseases, seem to be surging. Yet it can be difficult to get an accurate picture how insect populations are shifting.
Many traditional methods of sampling insect populations involve sending entomologists out into the field to collect and identify individual species, and while these methods can yield reliable results, it's also time and resource intensive and often lethal to the insects that get caught. This is where AI comes into the picture.
Part 1
A study led by Medical Research Council (MRC) researchers has identified genetic variants in two genes that have some of the largest impacts on obesity risk discovered to date.
The discovery of rare variants in the genes BSN and APBA1 are some of the first obesity-related genes identified for which the increased risk of obesity is not observed until adulthood.
The researchers used UK Biobank and other data to perform whole exome sequencing of body mass index (BMI) in over 500,000 individuals.
They found that genetic variants in the gene BSN, also known as Bassoon, can raise the risk of obesity as much as six times and was also associated with an increased risk of non-alcoholic fatty liver disease and of type 2 diabetes.
The Bassoon gene variants were found to affect 1 in 6,500 adults.
Previous research has identified several obesity-associated gene variants conferring large effects from childhood, acting through the leptin-melanocortin pathway in the brain, which plays a key role in appetite regulation.
However, while both BSN and APBA1 encode proteins found in the brain, they are not currently known to be involved in the leptin-melanocortin pathway. In addition, unlike the obesity genes previously identified, variants in BSN and APBA1 are not associated with childhood obesity.
This has led the researchers to think that they may have uncovered a new biological mechanism for obesity, different to those we already know for previously identified obesity gene variants.
Based on published research and laboratory studies they report in this paper, which indicate that BSN and APBA1 play a role in the transmission of signals between brain cells, the researchers suggest that age-related neurodegeneration could be affecting appetite control.
For this study, the researchers worked closely with AstraZeneca to replicate their findings in existing cohorts using genetic data from individuals from Pakistan and Mexico. This is important as the researchers can now apply their findings beyond individuals of European ancestry.
If the researchers can better understand the neural biology of obesity, it could present more potential drug targets to treat obesity in the future.
Protein-truncating variants in BSN are associated with severe adult-onset obesity, type 2 diabetes and fatty liver disease, Nature Genetics (2024). DOI: 10.1038/s41588-024-01694-x
But Clyde Francks, a geneticist and neuroscientist at the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands, and his team looked for genetic variants in protein-coding sequences. Their analysis of 313,271 right-handed and 38,043 left-handed individuals’ genetic data, from the UK Biobank, uncovered variants in a tubulin gene, dubbed TUBB4B, which were 2.7 times more common in left-handed people than in right-handers.
Microtubules could influence handedness because they form cilia — hair-like protrusions in cell membranes — which can direct fluid flows in an asymmetric way during development.
In spite of affecting only a small proportion of the people in this considerable data set, rare variants “can give clues to developmental mechanisms of brain asymmetry in everyone”, these findings pave the way for future work to determine how microtubules, which themselves have a molecular ‘handedness’, can give an “asymmetric twist” to early brain development.
https://www.nature.com/articles/s41467-024-46277-w?utm_source=Live+...
**
Part 2
© 2025 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!