SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: yesterday

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Wildfires ignite infection risks by weakening the body's immune defenses and spreading bugs in smoke

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Over the past several days, the world has watched on in shock as wildfires have devastated large parts of Los Angeles.Beyond the obvious destruction—to landscapes, homes, businesses and more—fires at…Continue

Rewrite the textbooks: Damage to RNA, not DNA, found to be main cause of acute sunburn!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

We have all been told to avoid direct sunlight between 12 noon and 3 p.m., seek out shade and put on sunscreen and a hat. Nevertheless, most of us have experienced sunburn at least once. The skin…Continue

Study shows hot leaves can't catch carbon from the air. It's bad news for rainforests—and Earth

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

On the east coast of Australia, in tropical North Queensland, lies the Daintree rainforest—a place where the density of trees forms an almost impenetrable mass of green.Stepping into the forest can…Continue

Baseless beliefs Vs informed imagination (or educated guessing)

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 2 Replies

Sometime back a rationalist was killed in Maharashtra (Indian State) for educating people about the truth of witchcraft. We had a discussion on the subject on an online news website. There while…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 12:00pm

Listen to a star ‘twinkle’

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 11:08am

Australia's Great Barrier Reef in grip of 'mass bleaching event'

A "mass bleaching event" is unfolding on Australia's famed Great Barrier Reef, authorities said recently, as warming seas threaten the spectacular home to thousands of marine species.

Often dubbed the world's largest living structure, the Great Barrier Reef is a 2,300 kilometre (1,400 mile) expanse of tropical corals that house a stunning array of biodiversity.
But repeated mass bleaching events have threatened to rob the tourist drawcard of its wonder, turning banks of once-vibrant corals into a sickly shade of white.

"We know the biggest threat to coral reefs worldwide is climate change. The Great Barrier Reef is no exception.
The damaging mass bleaching event—the seventh since 1998—was confirmed by government scientists following aerial surveys of 300 shallow reefs.

The Australian Reef Authority said it would now need to conduct further surveys to assess the severity and extent of bleaching.

Coral bleaching occurs when underwater temperatures are more than 1 degree warmer than the long-term average.

As corals come under heat stress, they expel algae living within their tissues—draining them of their vibrant colours.
Ocean temperatures along the Great Barrier Reef have approached record levels in the past few weeks, according to official monitoring.
This bleaching event is unfolding in an area where corals have not been previously exposed to these extreme temperatures.
Undoubtedly climate change was "putting tremendous pressure" on the Great Barrier Reef.
The reef is no longer capable of recovering to the mix of coral species and the sizes of corals that were there 20 years ago, according to scientists.
The fate of the reef has been a recurrent source of tension between the Australian government and the United Nations' World Heritage Committee.

The World Heritage Committee has threatened to put the reef on a list of "in danger" global heritage sites, a move that would likely damage its allure for international tourists.
Before this event, Australia's Great Barrier Reef suffered mass coral bleaching in 1998, 2002, 2016, 2017, 2020 and 2022.
Source: AFP and other news agencies
Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 10:46am

For the study, the 5-carbon sugar deoxyribose, which forms the backbone of DNA, was replaced by a 4-carbon sugar. In addition, the number of nucleobases was increased from four to six. By exchanging the sugar, the TNA is not recognized by the cell's own degradation enzymes. This has been a problem with nucleic acid-based therapeutics, as synthetically produced RNA that is introduced into a cell is rapidly degraded and loses its effect.

The introduction of TNAs into cells that remain undetected could now maintain the effect for longer. "In addition, the built-in unnatural base pair enables alternative binding options to target molecules in the cell.

TNAs could also be used for the targeted transport of drugs to specific organs in the body (targeted drug delivery) as well as in diagnostics; they could also be useful for the recognition of viral proteins or biomarkers.

Hannah Depmeier et al, Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage, Journal of the American Chemical Society (2024). DOI: 10.1021/jacs.3c14626

part2

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 10:45am

Researchers develop artificial building blocks of life

For the first time, scientists  have developed artificial nucleotides, the building blocks of DNA, with several additional properties in the laboratory, which could be used as artificial nucleic acids for therapeutic applications.

DNA carries the genetic information of all living organisms and consists of only four different building blocks, the nucleotides. Nucleotides are composed of three distinctive parts: a sugar molecule, a phosphate group, and one of the four nucleobases adenine, thymine, guanine, and cytosine.

The nucleotides are lined up millions of times and form the DNA double helix, similar to a spiral staircase. Scientists have now shown that the structure of  nucleotides can be modified to a great extent in the laboratory. The researchers developed so-called threofuranosyl nucleic acid (TNA) with a new, additional base pair.

But artificial nucleic acids differ in structure from their originals. These changes affect their stability and function.  However,  threofuranosyl nucleic acid is more stable than the naturally occurring nucleic acids DNA and RNA, which brings many advantages for future therapeutic use.

These are the first steps on the way to fully artificial nucleic acids with enhanced chemical functionalities. The study "Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage' was published in the Journal of the American Chemical Society.

part1

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 10:40am

Ebola-fighting potential of engineered bacteria

The  Ebola virus has proven an especially lethal contagion, killing roughly 50% of the people who contract it. The 2019 FDA approval of a vaccine, combined with the subsequent development of two antibody-based drugs, marked unprecedented progress against one species of the virus. Yet the continuing threat posed by several other types of Ebola has left researchers in pursuit of additional treatments—particularly in developing regions of Africa, where limited infrastructure can impede the storage and deployment of vaccines.

One approach to combating viral threats has come in the form of a microbial counterpart: bacteria. In researching inhibitors of HIV, for instance, some researchers identified the promise of lectins, or bacteria-generated proteins that can selectively bind to the surfaces of viral particles, thereby neutralizing them.

Scientists took a special interest in scytovirin, a type of lectin produced by cyanobacteria, likely the Earth's first oxygen-producing organisms. Because scytovirin had shown some early success in inhibiting Ebola, they went about engineering two strains of lactic acid bacteria, which can safely colonize the human body, to display scytovirin on their own surfaces. The study is published in the journal Frontiers in Microbiology.

After constructing research-safe shells of Ebola particles, the virologists introduced them to the two bacterial strains. Their experiments revealed that one of the engineered strains, Lactococcus lactis, could neutralize roughly 54% of the Ebola particles—more than twice the rate of scytovirin-free L. lactis.

The research team  is now testing the bacteria-delivered antiviral in mice, where the virologists are determining whether the engineered L. lactis can neutralize Ebola the way it did in cell cultures. Passing that test could eventually lead to human trials.

If it does continue to perform, L. lactis—which is already used to make cheese and buttermilk—could become a relatively simple, inexpensive, long-term way to protect vulnerable populations against the devastating virus, the team said.

Joshua Wiggins et al, Lactic acid bacterial surface display of scytovirin inhibitors for anti-ebolavirus infection, Frontiers in Microbiology (2023). DOI: 10.3389/fmicb.2023.1269869

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 10:26am

Egg-laying caecilian amphibians produce milk for their young, find scientists

Parental care for offspring occurs in many animals and is an essential part of the reproduction, propagation and development of an organism. An international research team has revealed for the first time how egg-laying female caecilian amphibians successfully raise their offspring in the nest.

Caecilian amphibians are one of the least known vertebrate groups. The researchers were able to observe that the females of egg-laying amphibians, such as the species Siphonops annulatus, provide their young a similarly high-fat milk in the nest as, for example, egg-laying mammals. This discovery demonstrates the complexity of the evolution of reproductive strategies in vertebrates and expands our knowledge of brood care and communication in amphibians.

The research is published in the journal Science.

In most vertebrates, the yolk is usually the only form of nutrition females provide to the growing embryo. The research team observed that the young of the Brazilian caecilian Siphonops annulatus consumed milk for over two months, which appears to be secreted in response to tactile and acoustic stimulation from the mother's cloaca. The milk consists mainly of fats and carbohydrates and is produced in the glands of the female's oviduct.

Scientists have now discovered a vertebrate system in amphibians that has developed similarly comprehensive brood care mechanisms as known for mammals. This includes the production of fat-rich mother's milk and the release of milk to the young in the nest, known as lactation. This tells us a lot about the evolution and reproductive strategies of this still little-known vertebrate order.

Caecilian amphibians are legless, snake-like amphibians that are widespread in the tropical regions of the world. All caecilian amphibians provide brood care. The female of the Brazilian amphibian Siphonops annulatus lays eggs and raises its hatchlings in the nest with fat-rich "milk" as well as its skin. Parental brood care is therefore similar to that of egg-laying mammals such as echidnas and platypuses.

Pedro L. Mailho-Fontana et al, Milk provisioning in oviparous caecilian amphibians, Science (2024). DOI: 10.1126/science.adi5379

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 10:21am

Scientists use the term horizontal gene transfer to describe how living organisms can transfer genetic material between different individuals, including those of other species. In this way, bacteria exchange extensive genetic information, often in the form of plasmids, in order to quickly adapt to changing environmental conditions or to adapt to the host. The rapid evolution of various pathogens is based on such mechanisms, among other things.

In fungi and many other so-called eukaryotic organisms, however, horizontal gene transfer in the form of entire chromosomes is very rare.

The analysis of the genetic information of the fungal strains shows that M. robertsii independently transferred a single chromosome a total of five times during the co-infection experiments, but no other genetic information from one strain to another via horizontal transfer.

Further analyses also indicated that the same chromosome can also be found in the distantly related, also insect-damaging fungus species Metarhizium guizhouense, whose common evolutionary origin with M. robertsii dates back around 15 million years.

The chromosome in M. guizhouense is significantly less altered than would be assumed for the long period of separate evolution of the two fungal species. The chromosome therefore also appears to have been passed on naturally between these different fungal species—and probably horizontally.

The experiments showed that, under certain conditions, the fungus that had received the accessory chromosome had competitive advantages over fungi of the same strain that had not received the chromosome and were able to prevail against them.

The transfer of the chromosome may therefore have advantages for the fungus, the functional basis of which is still unclear. However, one plausible possibility is the transfer of certain genes that produce chitin-cleaving enzymes and can thus improve the ability to infect the insects.

Michael Habig et al, Frequent horizontal chromosome transfer between asexual fungal insect pathogens, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2316284121

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 10:18am

Horizontal gene transfer: How fungi improve their ability to infect insects

Researchers have investigated for the first time in detail how a fungus important for biological plant protection can pass on an advantageous chromosome horizontally, using a previously little-studied way of exchanging genetic information.

Sustainable plant protection measures that are not based on chemical pesticides rely on various organisms and biological agents to protect crops from pests. Such organisms used for biological plant protection are, for example, microscopic fungi of the genus Metarhizium, which can attack and kill a variety of plant-pathogenic insects and are used, for example, in South American sugar cane cultivation.

The molecular mechanisms of fungal infection and the immune response of insects are in an ongoing process of mutual evolutionary adaptation.

The researchers examined the genomes of different strains of the fungi Metarhizium robertsii and Metarhizium brunneum from an earlier co-infection experiment in which ants had been infected with the fungus mix.

In the study, the outgrowing spores were used to infect new ants over 10 consecutive infection cycles. When analyzing the fungal genomes from these infection series, researchers made an exciting observation:  the analyses showed that a single chromosome was very frequently exchanged horizontally between two different strains.

This chromosome contains certain genes that the scientists suspect may give the fungus an advantage in infecting its hosts. The horizontal transfer of entire chromosomes has rarely been described scientifically and has now been studied in detail for the first time. The researchers from the Kiel Evolution Center (KEC) and ISTA published their results in the journal Proceedings of the National Academy of Sciences.

Part 1

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 9:58am

Altered protein folding drives multicellular evolution

Researchers have discovered a mechanism steering the evolution of multicellular life. They identified how altered protein folding drives multicellular evolution.

In a new study led by researchers, they turned to a tool called experimental evolution. In the ongoing Multicellularity Long Term Evolution Experiment (MuLTEE), laboratory yeast are evolving novel multicellular functions, enabling researchers to investigate how they arise.

The study, published in Science Advances, puts the spotlight on the regulation of proteins in understanding evolution.

By demonstrating the effect of protein-level changes in facilitating evolutionary change, this work highlights why knowledge of the genetic code in itself does not provide a full understanding of how organisms acquire adaptive behaviours. Achieving such understanding requires mapping the entire flow of genetic information, extending all the way to the actionable states of proteins that ultimately control the behaviour of cells.

Among the most important multicellular innovations is the origin of robust bodies: over 3,000 generations, these 'snowflake yeast' started out weaker than gelatin but evolved to be as strong and tough as wood.

Researchers identified a non-genetic mechanism at the base of this new multicellular trait, which acts at the level of protein folding. The authors found that the expression of the chaperone protein Hsp90, which helps other proteins acquire their functional shape, was gradually turned down as snowflake yeast evolved larger, tougher bodies.

It turns out Hsp90 acted as a critically-important tuning knob, destabilizing a central molecule that regulates the progression of the cell cycle, causing cells to become elongated. This elongated shape, in turn, allows cells to wrap around one another, forming larger, more mechanically tough multicellular groups.

From an evolutionary perspective, this work highlights the power of non-genetic mechanisms in rapid evolutionary change.

 Kristopher Montrose et al, Proteostatic tuning underpins the evolution of novel multicellular traits, Science Advances (2024). DOI: 10.1126/sciadv.adn2706www.science.org/doi/10.1126/sciadv.adn2706

Comment by Dr. Krishna Kumari Challa on March 9, 2024 at 9:54am

To investigate the role of water in collagen formation, researchers decided to replace water with its heavier 'twin molecule' D2O. 

However, in interaction with proteins, D2O is less potent than H2O. This is because bonds between D2O molecules (so-called hydrogen-bonds) are stronger than those between H2O molecules. This affects the interaction with proteins such as collagen.

Researchers were keen to study the effect this would have on collagen assembly. Together with a multi-disciplinary collaborative research network, they were able to establish that the use of heavy water results in ten times faster collagen formation, and ultimately a less homogeneous, softer and less stable collagen-fiber network.

The explanation is that the reduced interaction of the heavy water with the collagen protein makes it easier for the protein to 'shake off' the D2O molecules and reorganize itself.

This boosts the formation of the collagen network, but also results in a sloppier, less optimal collagen network. Water thus acts as a mediator between collagen molecules, slowing down the assembly to guarantee the functional properties of living tissues.

This discovery offers fresh perspectives on how water influences the characteristics of collagen, allowing for precise adjustments in the mechanical properties of living tissues. It also creates novel avenues for creating collagen-based materials where macroscopic properties can be controlled and fine-tuned by subtle variations in the composition of the solvent, rather than making significant changes to the chemical structure of the molecular building blocks.

 Giulia Giubertoni et al, Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2313162121

Part 2

**

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service