Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
Over the past several days, the world has watched on in shock as wildfires have devastated large parts of Los Angeles.Beyond the obvious destruction—to landscapes, homes, businesses and more—fires at…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
We have all been told to avoid direct sunlight between 12 noon and 3 p.m., seek out shade and put on sunscreen and a hat. Nevertheless, most of us have experienced sunburn at least once. The skin…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
On the east coast of Australia, in tropical North Queensland, lies the Daintree rainforest—a place where the density of trees forms an almost impenetrable mass of green.Stepping into the forest can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 2 Replies 0 Likes
Sometime back a rationalist was killed in Maharashtra (Indian State) for educating people about the truth of witchcraft. We had a discussion on the subject on an online news website. There while…Continue
Comment
In the study, "Pressure induced transformation of biomass to a highly durable, low friction film on steel" published in the journal Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, researchers from the Universities of Sheffield and York have focused on the friction and chemical aspects of leaves on the line, which provides a new, detailed understanding of the processes that happen when leaves are present between train wheels and the rails.
The analysis reveals that certain chemicals, like polyphenols, including tannins (the chemicals present in wine and tea), play a crucial role in forming a strong, thin film on these surfaces. Under high pressures and heat, this film contains compounds that stick to the metal surface of the railhead.
This new understanding of the leaf-derived layer's composition is expected to guide the development of innovative solutions to the issue.
Since phenolics play a crucial role, remediation efforts targeting these molecules, such as enzymatic digestion or using next generation cleaning agents that effectively dissolve aromatic species, should be explored, according to the study's findings. The potential for cleaning agents to be used as tools for restoring friction to safe levels could ultimately enhance the operational performance and safety of rail transport for both passengers and operators.
Joseph L. Lanigan et al, Pressure induced transformation of biomass to a highly durable, low friction film on steel, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (2024). DOI: 10.1098/rspa.2023.0450
A new insight into how leaves transform into slippery layers on railway lines, causing delays for passengers and costing the rail industry millions every year, has been revealed by engineers.
The research has revealed the chemical mechanisms that take place when leaves on the line are crushed between the wheels of a train and the railhead, forming slippery layers that make it difficult for trains to start and stop.
Findings from the study could be used to develop more effective solutions to the long-running problem that affects rail travel every autumn and winter.In laboratory experiments, the researchers exposed groups of juvenile earthworms (Eisenia fetida) to individual pesticides, and combinations of neonics and DIF, in concentrations that mimicked residues left behind by pesticide-treated seeds. After 30 days, the worms were weighed and their mtDNA damage was examined. While all the worms survived, the earthworms in single pesticide-treated soil gained 30 to 80% less weight during that period than a control group living in untreated soil.
Additionally, the worms exposed to one of the four tested neonicotinoids and DIF at the same time gained considerably less weight than those exposed to a single compound. Pesticide exposure also resulted in a significant increase in mtDNA damage. Because mitochondria generate most of the energy within cells, damage to their DNA could interrupt cellular functions and other metabolic processes.
The researchers say that these findings establish a link between neonics and fungicide mixtures that are likely present in the environment and earthworm health, which could inform the unexpected risks of using neonics in seed treatments.
Mitochondrial DNA Damage in Earthworms: A Hazard Associated with Sublethal Systemic Pesticide Exposures, Environmental Science & Technology Letters (2024). DOI: 10.1021/acs.estlett.3c00914. pubs.acs.org/doi/abs/10.1021/acs.estlett.3c00914
Part 2
While pesticides protect crops from hungry animals, pesky insects, or even microbial infections, they also impact other vital organisms, including bees and earthworms. Now, research published in Environmental Science & Technology Letters reveals that worms are affected by the relatively small amounts of chemicals that can leach out of pesticide-treated seeds. Exposure to nonlethal amounts of these insecticides and fungicides resulted in poor weight gain and mitochondrial DNA (mtDNA) damage in the worms.
--
Pesticide treatment can be introduced at several different stages of a plant's life, either by covering seeds before they're sown or spraying already grown crops. Oftentimes, different chemicals are applied at the same time to maximize their efficiency. Neonicotinoids, also known as neonics, are one common class of insecticides used today in the U.S. and other countries, though many of them are banned in the European Union.
Recent research has shown that these insecticides and many fungicides persist in groundwater and soil, where earthworms may encounter them. One method to monitor the health of the impacted worms is through changes to the organisms' weight and mtDNA damage. Unlike DNA held in a cell's nucleus, mtDNA can't repair itself as well, and thus can help indicate less obvious, "off target" effects of a particular environmental toxin.
Part 1
This third magnetic sibling offers distinct advantages for the developing field of next-generation magnetic memory technology, known as spintronics. Whereas electronics makes use only of the charge of the electrons, spintronics also exploits the spin-state of electrons to carry information.
Juraj Krempaský, Altermagnetic lifting of Kramers spin degeneracy, Nature (2024). DOI: 10.1038/s41586-023-06907-7. www.nature.com/articles/s41586-023-06907-7
Part2
There is now a new addition to the magnetic family: thanks to experiments at the Swiss Light Source SLS, researchers have proved the existence of altermagnetism. The experimental discovery of this new branch of magnetism is reported in Nature and signifies new fundamental physics, with major implications for spintronics.
Magnetism is a lot more than just things that stick to the fridge. This understanding came with the discovery of antiferromagnets nearly a century ago. Since then, the family of magnetic materials has been divided into two fundamental phases: the ferromagnetic branch known for several millennia and the antiferromagnetic branch.
The experimental proof of a third branch of magnetism, termed altermagnetism, was made at the Swiss Light Source SLS, by an international collaboration led by the Czech Academy of Sciences together with Paul Scherrer Institute PSI.
The fundamental magnetic phases are defined by the specific spontaneous arrangements of magnetic moments—or electron spins—and of atoms that carry the moments in crystals.
Ferromagnets are the type of magnets that stick to the fridge: here spins point in the same direction, giving macroscopic magnetism. In antiferromagnetic materials, spins point in alternating directions, with the result that the materials possess no macroscopic net magnetization—and thus don't stick to the fridge. Although other types of magnetism, such as diamagnetism and paramagnetism have been categorized, these describe specific responses to externally applied magnetic fields rather than spontaneous magnetic orderings in materials.
Altermagnets have a special combination of the arrangement of spins and crystal symmetries. The spins alternate, as in antiferromagnets, resulting in no net magnetization. Yet, rather than simply canceling out, the symmetries give an electronic band structure with strong spin polarization that flips in direction as you pass through the material's energy bands—hence the name altermagnets. This results in highly useful properties more resemblant to ferromagnets, as well as some completely new properties.
Part 1
A car powered by ammonia?
Ammonia is combustible, and holds promise as a relatively low-effort way to decarbonize the internal combustion engine – but the devil’s in the details.
Researchers have created a new version of a microbe to compete economically with E. coli—a bacteria commonly used as a research tool due to its ability to synthesize proteins—to conduct low-cost and scalable synthetic biological experiments.
As an inexpensive multiplier—much like having a photocopier in a test tube—the bacteria Vibrio natriegens could help labs test protein variants for creation of pharmaceuticals, synthetic fuels and sustainable compounds that battle weeds or pests. The microbe can work effectively without costly incubators, shakers or deep freezers and can be engineered within hours.
Efficient Natural Plasmid Transformation of Vibrio natriegens Enables Zero-capital Molecular Biology, PNAS Nexus (2024). DOI: 10.1093/pnasnexus/pgad444
Air pollution turns moths off flowers
Air pollution makes the scent of a night-blooming plant less enticing to pollinating moths. Researchers discovered that nitrate radicals severely degrade key odour components that attract pollinating insects to the pale evening primrose (Oenothera pallida). Nitrate radicals, which can come from various sources including vehicle emissions, are particularly abundant when there’s no sunlight to break them down. Artificial flowers spiked with the pollution-degraded scent received 70% fewer visits from wild hawkmoths than fake flowers with intact odour. Because hawkmoths are some of the primrose’s main pollinators this could reduce the plant’s fruit production by almost 30%.
Plastic pollution is a pressing environmental issue, and researchers are leading the charge with an innovative solution.
Their research, published in Scientific Reports, centers on an intriguing solution: using natural deep eutectic solvents (NADES) to capture and remove these miniature particles from water.
Plastics don't break down easily, leading to massive piles of waste. Over time, these plastics break into smaller fragments. The smallest, nano-plastics, are so tiny they can't be seen without a microscope. Their size makes them a significant hazard, as they can be ingested by marine life and enter the human food chain.
These minute particles, often invisible to the naked eye, are the remnants of larger plastic pieces broken down by sunlight and physical stress. Their size makes them notoriously difficult to remove using conventional methods like centrifugation or filtration, which are either inefficient or too costly.
Now think of NADES as a kind of 'magnet' that specifically attracts and holds onto these small plastic pieces. Basically, the NADES mix with the water and 'stick' to the plastics, pulling them out of the water.
The molecules in the NADES can form bonds with the molecules in the plastics, a bit like how Velcro works: one side sticks to the other. This property makes NADES particularly good at grabbing onto and holding these plastic particles. NADES are also unique because they are effective and environmentally friendly. They're made from natural materials, meaning they don't add more pollutants to the environment while cleaning up the existing ones.
Derived from natural sources like plants and coconuts, these solvents transform from solid to liquid when mixed, creating an effective medium to extract these tiny plastic particles from water.
The researchers focused on polyethylene terephthalate (PET) like that found in plastic bottles, polystyrene (PS) used for materials such as packaging peanuts and polylactic acid (PLA) used for plastic films and food containers. Using computer simulations, they could see how these interactions work on a minute scale.
Their experiments revealed that certain NADES are particularly good at extracting these types of plastic from water. This discovery was crucial, offering a targeted approach to removing plastics.
Jameson R. Hunter et al, Green solvent mediated extraction of micro- and nano-plastic particles from water, Scientific Reports (2023). DOI: 10.1038/s41598-023-37490-6
© 2025 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!