Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 3 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 4 hours ago. 1 Reply 0 Likes
Research suggests that cultural evolution has become increasingly influential, sometimes even outstripping the rate and impact of genetic evolution in humans due to culture's rapid, socially learned,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: Why do people say you can't trust science because it changes, and how does that contrast with religious beliefs?Krishna: “Because it changes” - if you don’t understand why the changes occur, you…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
Maternal gut microbiome composition may be linked to preterm birthsPeople associate several things regarding pregnancy to eclipses and other natural phenomenon. They also associate them with papaya…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 9. 1 Reply 0 Likes
Playwright Tom Stoppard, in "Rosencrantz and Guildenstern are Dead," provides one of the…Continue
Comment
Hearing a baby cry can trigger a range of responses in adults, such as sympathy, anxiety and a strong urge to help. However, new research suggests that a deeper physical reaction is also occurring. A baby's cry, particularly if it is in pain or distress, makes our faces physically warmer.
Since they can't speak yet, babies cry to communicate their needs, whether they're in pain or want some attention. When a baby is in distress, they forcefully contract their ribcage, which produces high-pressure air that causes their vocal cords to vibrate chaotically. This produces complex disharmonious sounds known as nonlinear phenomena (NLP).
To study how adults respond to crying babies, scientists played 23 different recordings to 41 men and women with little to no experience with young infants. At the same time, a thermal infrared imaging camera measured subtle changes to their facial temperatures. A rise in temperature in this part of the body is governed by the autonomic nervous system, a network of nerves that controls unconscious processes such as breathing and digestion. After each cry, the participants rated whether the baby was in discomfort or in pain.
The study found that adults' facial temperatures change when they hear a baby cry, a clear sign that the autonomic nervous system has been activated. This suggests that people unconsciously pick up on acoustic features in a baby's cry. The higher the level of NLP (meaning a baby is in more pain or distress), the stronger and more in sync the listener's facial temperature became. In other words, as the cry grew louder, a person's face grew warmer. This physiological reaction was the same for both men and women.
Lény Lego et al, Nonlinear acoustic phenomena tune the adults' facial thermal response to baby cries with the cry amplitude envelope, Journal of the Royal Society Interface (2025). DOI: 10.1098/rsif.2025.0150
Researchers have found that a common gut yeast, Candida albicans, can help Salmonella typhimurium take hold in the intestine and spread through the body. When interacting, a Salmonella protein called SopB prompts the yeast to release arginine, which turns on Salmonella's invasion machinery and quiets the body's inflammation signals.
Gut microbes shape human health across colonization resistance, immune training, digestion, and signaling that reaches distant organs. Bacteria dominate both abundance and research attention, while roles for viruses and fungi remain less defined.
Altered mycobiome composition appears in multiple gastrointestinal diseases, and integration of fungi into gut ecology and into interactions with commensal and pathogenic bacteria remains largely unknown.
Non-typhoidal Salmonella ranks among the best-studied enteric pathogens, infecting an estimated 100 million people each year. Healthy individuals typically experience localized inflammatory diarrhea, while immunocompromised patients face risks of spread to peripheral organs.
Establishing gut colonization requires competition with resident microorganisms, and commensal fungi occur across tested mammalian species, yet mycobiome contributions during enteric infection remain largely unexplored.
Candida albicans is a frequent colonizer of human mucosal surfaces, present in the gut of more than 60% of healthy humans. Usual behavior is commensal, with pathogenic potential particularly in immunocompromised hosts. A key virulence trait is morphology switching from yeast to epithelium-penetrating hyphae.
Associations with inflammatory bowel disease, specifically Crohn's disease, have been reported. C. albicans cannot induce gut inflammation and has been shown to exacerbate it. Both Salmonella and C. albicans thrive under inflammatory gut conditions, and C. albicans likely resides in the gut of many patients at the time Salmonella infection occurs.
In the study, "Commensal yeast promotes Salmonella Typhimurium virulence," published in Nature, researchers investigated cross-kingdom interactions to determine how Candida albicans influences Salmonella colonization, systemic dissemination, and host inflammatory responses.
In the experiments conducted in mice, Candida in the gut led to higher Salmonella loads in the large intestine and more bacteria reaching the spleen and liver, with co-infected mice losing more weight. Candida also boosted Salmonella entry into human colon cell lines. Gene readouts showed Salmonella's invasion machinery switched on near Candida.
Co-cultures contained millimolar arginine, and adding L-arginine alone increased invasion in a dose-dependent way, while an arginine-transporter mutant did not respond to Candida. Candida lacking arginine production also failed to boost Salmonella invasion or gut colonization, and an ARG4 revertant restored the effect.
Researchers conclude that C. albicans colonization represents a susceptibility factor for Salmonella infection, with arginine acting as a pivotal metabolite connecting fungus, bacterium, and host. Findings point to SopB-driven arginine production in Candida that boosts Salmonella's invasion program while softening host inflammatory signals.
Kanchan Jaswal et al, Commensal yeast promotes Salmonella Typhimurium virulence, Nature (2025). DOI: 10.1038/s41586-025-09415-y
New research, published online in Cell Systems, provides a significant breakthrough in this field, identifying a powerful anti-cancer metabolite produced by bacteria associated with colorectal cancer.
This finding opens the door to new strategies for treating cancer, including the development of novel drugs that could make existing therapies more potent.
The researchers used a sophisticated large-scale screening approach to test over 1,100 conditions in C. elegans. Through this, they found that the bacteria E. coli produced a molecule called 2-methylisocitrate (2-MiCit) that could improve the effectiveness of the chemotherapy drug 5-fluorouracil (5-FU).
Using computer modeling, the team demonstrated that the tumor-associated microbiome (bacteria found within and around tumors) of patients was also able to produce 2-MiCit. To confirm the effectiveness of 2-MiCit, the team used two further systems; human cancer cells and a fly model of colorectal cancer. In both cases, they found that 2-MiCit showed potent anti-cancer properties, and for the flies could extend survival.
Bacteria are associated with tumors, and now scientists are starting to understand the chemical conversation they're having with cancer cells.
They found that one of these bacterial chemicals can act as a powerful partner for chemotherapy, disrupting the metabolism of cancer cells and making them more vulnerable to the drug.
The study revealed that 2-MiCit works by inhibiting a key enzyme in the mitochondria (structures inside cells that generate energy for cellular functions) of cancer cells. This leads to DNA damage and activates pathways known to reduce the progression of cancer. This multi-pronged attack weakens the cancer cells and works in synergy with 5-FU. The combination was significantly more effective at killing cancer cells than either compound alone.
These exciting discoveries highlight how the cancer-associated microbiome can impact tumor progression, and how metabolites produced by these bacteria could be harnessed to improve cancer treatments.
These findings are also important in the context of personalized medicine, emphasizing the importance of considering not only the patient, but also their microbes.
Daniel Martinez-Martinez et al, Chemotherapy modulation by a cancer-associated microbiota metabolite, Cell Systems (2025). DOI: 10.1016/j.cels.2025.101397
Research led by Liverpool School of Tropical Medicine and the Malawi-Liverpool-Wellcome Program shows that over half of hospital patients with breathlessness had died within a year of admission (51%), as opposed to just 26% of those without the symptom.
Most of these patients had more than one condition that caused breathlessness, including pneumonia, anemia, heart failure and TB.
The findings demonstrate the importance of integrated, patient-centered care, researchers say, to tackle the burden of high mortality for people with breathlessness, particularly in low-income countries. The work appears in Thorax.
Most of these patients live with more than one condition at the same time, which the researchers found to be a factor linked to higher mortality, such as those with TB or pneumonia. This suggests that treating diseases in isolation is not enough, and health care models that have traditionally focused on single presenting conditions may overlook important concurrent diseases.
Acute breathlessness as a cause of hospitalisation in Malawi: a prospective, patient-centred study to evaluate causes and outcomes, Thorax (2025). DOI: 10.1136/thorax-2025-223623
Medications taken years ago can continue to shape the human gut microbiome, according to a large-scale study.
Analyzing stool samples and prescription records from over 2,500 Estonian Biobank participants in the Estonian Microbiome cohort, researchers found that the majority of drugs studied were linked to microbiome changes, with a substantial number of them also showing long-term effects detectable years after patients stopped taking them.
The impact was not limited to antibiotics: antidepressants, beta-blockers, proton pump inhibitors, and benzodiazepines all left microbial "fingerprints."
Most microbiome studies only consider current medications, but our results show that past drug use can be just as important as it is a surprisingly strong factor in explaining individual microbiome differences.
This highlights that it is critical to account for drug usage history when studying links between the microbiome and disease. The research is published in the journal mSystems.
Interestingly, benzodiazepines—commonly prescribed for anxiety—had microbiome effects comparable to broad-spectrum antibiotics. The results also show that drugs from the same class that might be used for the same condition, e.g. diazepam and alprazolam, may differ in how much they disrupt the microbiome.
Follow-up samples from a subset of participants confirmed that starting or stopping certain drugs caused predictable microbial shifts, suggesting causal effects. Despite the small sample size of the second time-point analysis, the authors were able to verify long-term effects of proton pump inhibitors, selective serotonin reuptake inhibitors and antibiotics, such as penicillins in combination and macrolides.
Oliver Aasmets et al, A hidden confounder for microbiome studies: medications used years before sample collection, mSystems (2025). DOI: 10.1128/msystems.00541-25
Our increasingly digitized world has a data storage problem. Hard drives and other storage media are reaching their limits, and we are creating data faster than we can store it. Fortunately, we don't have to look too far for a solution, because nature already has a powerful storage medium with DNA (deoxyribonucleic acid). It is this genetic material that researchers are using to create DNA storage cassettes.
DNA is the ultimate data storage solution because it is compact, dense and durable. It can hold an enormous amount of information in a microscopic space and preserve that data for thousands of years without needing electricity. Theoretically, the DNA in a single human cell has a capacity of approximately 3.2 gigabytes, which equates to roughly 6,000 books, 1,000 pieces of music or two movies.
Scientists have known about DNA's potential as a storage solution for a long time, but the challenge up until now has been to create a viable system that we can use. In a new study published in the journal Science Advances, researchers describe how they made a DNA cassette similar to cassette tapes that were staples in personal and car stereos in the 1980s.
The team first created the physical tape from a polyester-nylon blend. Then they printed barcode patterns on it to make millions of tiny, separate sections, similar to folders on a computer. This lets the system find the exact spot where the data is stored. Accessing information has been one of the problems of previous DNA storage techniques.
To store a file, digital data is first translated into a DNA sequence. The four bases, or building blocks of DNA (A, G, C, and T) act as a code, similar to the zeroes and ones that computers use. The researchers also coated the tape with a protective crystalline layer to protect the DNA bonds from breaking down.
Finally, they proved the system works by converting a digital image into DNA, then successfully and quickly retrieving it from the tape.
DNA cassette tape provides a strategy for fast, compact, large-scale DNA-based cold (infrequently accessed) or warm (needed on demand) data storage, wrote the scientists in their paper.
Jiankai Li et al, A compact cassette tape for DNA-based data storage, Science Advances (2025). DOI: 10.1126/sciadv.ady3406
A review of 11 studies comparing donor-egg IVF to own-egg IVF found that donor-egg pregnancies had significantly higher rates of hypertensive disorders in the mother, as well as preterm birth and babies that were small for their gestational age.
A separate review focusing on preeclampsia in singleton IVF pregnancies found the condition occurred in 11.2% of donor-egg pregnancies, compared to 3.9% of own-egg pregnancies.
For women who can only become pregnant using a donor egg, these risks may be worth accepting. But it's important that women are made aware of the potential complications, especially if carrying twins, which further increases risks.
Women deserve full, unbiased information about the risks. That includes knowing that carrying someone else's egg may increase the likelihood of pregnancy complications. They can then make informed decisions about whether the potential benefits outweigh the risks.
Phoebe Barry et al, The outcomes of surrogate pregnancy using a donor egg compared to the surrogate's egg: a systematic review, Preprints (2025). DOI: 10.22541/au.174919886.60741282/v1
Part2
More women than ever are carrying babies conceived with someone else's egg—but few are told that this might carry greater health risks.
Pregnancies involving an embryo that doesn't share the pregnant woman's DNA are becoming more common. For many, it's a path to parenthood that would otherwise be closed.
But emerging evidence suggests that these pregnancies may come with higher rates of complications, including preeclampsia, gestational diabetes and preterm birth, and that women are often not given the full picture before treatment.
As the fertility industry expands and diversifies, it's time to ask whether patients are being adequately informed about the risks of carrying another woman's egg—and whether more caution is needed in how these options are presented.
There are three situations in which a woman may carry another woman's egg in her uterus.
The most common is when a woman cannot produce her own eggs but has a functioning uterus. In this case, donor eggs and in-vitro fertilization (IVF) offer the only route to pregnancy.
The other two situations involve fertile women carrying a donated egg on behalf of someone else. This happens in cases of gestational surrogacy, where a surrogate carries a baby genetically unrelated to her, or in reciprocal IVF, also known as ROPA or co-IVF. In the latter, one woman in a same-sex couple (or a trans man) donates her egg to her partner, so that both have a biological connection to the child.
In IVF, fertilization occurs outside the body and the resulting embryo is transferred into the uterus. But what happens when the egg in the uterus has no genetic similarity to the woman carrying it? Could this cause complications for her or the baby?
To answer that question, we need to compare outcomes in these situations to pregnancies where the egg shares approximately 50% of the mother's DNA, either through natural conception or own-egg IVF. Early evidence suggests that having someone else's egg in the uterus is associated with a higher risk of obstetric complications, including preeclampsia, gestational diabetes and preterm birth.
There are three key comparisons to make. First, donor-egg IVF v own-egg IVF. For infertile women using donor eggs, the most relevant comparison is IVF with their own eggs.
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!