Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 8 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 8 hours ago. 5 Replies 0 Likes
When I was a very young school girl, I still remember very well, my Dad used to tell me to bear the pain out and not to scream and cry whenever I hurt myself and was in severe pain. I never ever saw…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 13 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
For years, scientists have believed that inflammation inevitably increases with age, quietly fueling diseases like …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Is plagiarism really plagiarism? When plagiarism is not really plagiarism!Now read this report of a research paper I came across.... Massive study detects AI fingerprints in millions of scientific…Continue
Comment
Researchers have developed nanorobots that kill cancer cells in mice. The robot's weapon is hidden in a nanostructure and is exposed only in the tumor microenvironment, sparing healthy cells. The study is published in the journal Nature Nanotechnology.
The research group has previously developed structures that can organize so-called death receptors on the surface of cells, leading to cell death. The structures exhibit six peptides (amino acid chains) assembled in a hexagonal pattern. "This hexagonal nanopattern of peptides becomes a lethal weapon".
If you were to administer it as a drug, it would indiscriminately start killing cells in the body, which would not be good. To get around this problem, the researchers have hidden the weapon inside a nanostructure built from DNA.
The art of building nanoscale structures using DNA as a building material is called DNA origami and is something the research team has been working on for many years. Now they have used the technique to create a 'kill switch' that is activated under the right conditions.
They have managed to hide the weapon in such a way that it can only be exposed in the environment found in and around a solid tumor. This means that they have created a type of nanorobot that can specifically target and kill cancer cells.
The key is the low pH, or acidic microenvironment that usually surrounds cancer cells, which activates the nanorobot's weapon. In cell analyses in test tubes, the researchers were able to show that the peptide weapon is hidden inside the nanostructure at a normal pH of 7.4, but that it has a drastic cell-killing effect when the pH drops to 6.5.
They then tested injecting the nanorobot into mice with breast cancer tumors. This resulted in a 70 percent reduction in tumor growth compared to mice given an inactive version of the nanorobot.
They now need to investigate whether this works in more advanced cancer models that more closely resemble the real human disease.
The researchers also plan to investigate whether it is possible to make the nanorobot more targeted by placing proteins or peptides on its surface that specifically bind to certain types of cancer.
A DNA Robotic Switch with Regulated Autonomous Display of Cytotoxic Ligand Nanopatterns, Nature Nanotechnology (2024). DOI: 10.1038/s41565-024-01676-4 , www.nature.com/articles/s41565-024-01676-4
Nipah virus is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia.
Just like Ebolavirus, SARS, SARS-CoV-2, and Marburg virus, the Nipah pathogen originated in bats. The name Nipah is derived from the name of the Malaysian village where pig farmers were infected in the late 1990s. Measles virus, although not of bat origin, is another member of the paramyxovirus family and stands out as one of the most contagious viruses known to science. While Nipah is less contagious than measles, it is capable of much higher mortality.
No licensed vaccines or therapies exist for patients infected with Nipah virus.
People infected with Nipah virus can be afflicted with dangerous respiratory impairment and brain swelling, symptoms that fuel the extraordinary fatality rates. Mortality ranges from a low of 40% to a high of 90%. The virus has been responsible for several relatively recent outbreaks in Bangladesh and India.
An experimental monoclonal antibody has now been engineered to target the deadly Nipah virus, an emerging zoonotic pathogen with a human mortality rate ranging as high as a staggering 90%.
Urgency underlies the development of therapeutics against a wide range of zoonotic viruses. The emerging pathogens have the potential to spur pandemics—or fall into the hands of malevolent forces that may use them for purposes of bioterrorism.
Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance, modify or mimic the immune system's attack on cells that aren't wanted.
Researchers hypothesized that a mAb (monoclonal antibody) against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against the Nipah virus F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.
In hamsters, the team found that administering hu1F5 one day after infection in hamsters led to 100% survival. It's important to note that hu1F5 also protected African green monkeys from Nipah virus even when given as late as five days after infection. In that arm of the research, all six infected animals survived. Hu1F5 also outperformed the earlier monoclonal antibody, m102.4, which protected only one out of six treated animals from death.
The team also introduced several mutations into the antibody to extend its half-life and reported that the monoclonal antibody that had superior performance in animal testing is progressing toward a phase 1 human clinical trial.
Larry Zeitlin et al, Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates, Science Translational Medicine (2024). DOI: 10.1126/scitranslmed.adl2055
Without science is old really gold?
People argue that old is gold. "Oh, those old golden days!" They become nostalgic very often.
But what type of gold is it? Without science?
A new discovery of 33 ancient tombs in Egypt's southern city of Aswan revealed "new information on diseases" prevalent at the time and how much people suffered in ancient times.
The tombs date back to the Ancient Egyptian Late Period and the Greco-Roman Periods, which collectively lasted from the seventh century BC until around the fourth century AD.
The burials were found by a joint Egyptian-Italian archaeological mission.
The studies of the mummies "indicate that 30 to 40 percent of those buried died in their youth, as newborns or as adolescents".
Preliminary studies on the remains showed that "some suffered from infectious diseases, while others had bone disorders".
The remains of several adult women showed signs of pelvic bone trauma.
Other mummies indicated "anemia, malnutrition, chest diseases, tuberculosis and signs of osteoporosis".
And there was no 'right treatment' as there was no 'science', the pursuit and application of knowledge and understanding of the natural and social world following a systematic methodology based on evidence.
People tried a few things based on their imagination and primitive understanding of things and people still suffered and died young.
"Golden days"?
Source: News agencies and Science Art Lab.
For years now, scientists have debated the costs of removing the ovaries for benign conditions, and if so, at what age it is safest to do so.
In cases of cancer, it's vital that the ovaries are excised to save the patient, but bilateral oophorectomies are also commonly used to treat endometriosis, ovarian cysts, and non-cancerous fibroids.
In the US, just over half of all people undergoing a hysterectomy have both of their ovaries removed as well, and more than a third of that group are under the age of 44.
In light of recent evidence, some experts argue that the risks and benefits of removing both ovaries at a young age are not being weighed appropriately by surgeons or patients. For children and adolescents, removal of both ovaries for benign conditions may be 'unnecessary' and come with lifelong risks.
If both ovaries are removed during a person's reproductive years, the body can enter early menopause, and this increases the risk of severe chronic health conditions that include bone density loss, impaired sexual health, cardiovascular disease, cognitive impairment, sleep apnea, and arthritis.
There are numerous reasons the ovaries should be spared when possible. Protecting the brain from possible harm is just one of them.
https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.13852
Part 3
To date, male brains have been the focus of the vast majority of neurological studies. Of all published brain imaging papers out there, less than 0.5 percent consider and explore the way hormones – including those produced by the gonads – can impact brain health and development.
In general, male brains possess greater white volume matter compared to female brains. Some scientists suspect this is due to differences in how sex hormones, produced by the testes and ovaries, impact the developing brain.
While testosterone is often thought of as a male hormone, it is also produced by the ovaries, and it plays a critical role in the female body. The hormone is also linked to white matter integrity in the brain.
If the ovaries are taken out of the body before menopause, the sudden loss of testosterone could have negative effects on the brain's development.
In the current brain imaging analysis, participants who had both their ovaries removed before age 40 commonly took estrogen to replace what their sex gonads once made. But this hormone replacement therapy had no impact on their white matter integrity.
"[I]t may be hypothesized that the explanation for our results is in part due to loss of testosterone," the team of researchers suggests.
"Additional studies to replicate this finding are clearly needed."
Many unanswered questions still exist to this day about what role the ovaries play in the lifelong health of female-bodied individuals and what happens when they are removed.
Part 2
Losing Both Ovaries Could Come at a Serious Cost to The Brain, Researchers Find
The ovaries are involved in far more than just reproduction. The two oval-shaped glands that float on either side of the uterus don't just produce and release eggs, they also pump out hormones that help keep a person's heart, bones, brain, and immune system healthy as they age.
A new brain imaging study has scientists concerned that the surgical removal of both ovaries can have overlooked health consequences in the long run.
The analysis included data from more than 1,000 females over the age of 50 in the US. Participants who had both ovaries removed before the age of 40 showed reduced white matter in several parts of their brain compared to 907 females under the age of 50 who had not undergone the same procedure.
Participants who had both ovaries removed after age 40 also showed reduced white matter integrity, but significantly less so than those who underwent the surgery younger.
The observed changes resembled vascular brain disease more closely than Alzheimer's, the researchers note, but it's also true that these are "early, preclinical features of [Alzheimer's disease] pathology."
Recent research has found that patients who've had both of their ovaries removed before they hit menopause face a higher risk of cognitive impairment and dementia later in life. But this is one of the first studies to try and figure out why.
Part 1
Are viruses living organisms?
I saw several answers on Quora where people say viruses are not living.
But the question is really complicated. And Biologists are divided.
When the Nature journal recently conducted a poll, 14% of the readers who responded said they are undecided, 46 percent said viruses are living organisms, while 35% said, they are not living.
Some viewed viruses as in between chemistry and biology, because viruses can be considered dead or alive at different times. For example, a dormant virus in a test tube is not alive until it finds a host. Then it comes alive and replicates with the help of the host.
“Chemistry becomes biology when chemistry is self-replicating and evolving,” according to some biotechnologists . “Viruses fit very well to this definition. They just wait for the perfect conditions (a suitable host cell) to replicate and evolve. So viruses are 100% living organisms,” they say.
Others suggested that the real question is whether the word ‘alive’ has any scientific meaning at all. “The divide between live and dead material is artificially imposed by us as biologists and more generally by us as people,” they say. “We like categorising everything in neat little boxes, but nature is not so easily categorised.”
And the debate goes on!
Would you like to join?
But are questions in science decided using polls?
NO!
Source: Springer Nature
How gut bacteria affect cancer drugs
A holistic view of the gut microbiome can help to predict how people with certain cancers will respond to a type of immunotherapy. Researchers developed a scoring system based on the ratio between two different populations of gut microbes: one linked to resistance to immune checkpoint inhibitors and the other associated with positive responses. The score also included quantification of Akkermansia muciniphila, a microbe that has gained attention owing to its potential role in influencing immune responses. The work “is a breakthrough from a diagnostic point of view”.
https://www.cell.com/cell/fulltext/S0092-8674(24)00538-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867424005385%3Fshowall%3Dtrue
https://www.nature.com/articles/d41586-024-02070-9?utm_source=Live+...
Risk of deadly fungus from climate change
Rising temperatures could cause mutations in fungi that mean they grow more aggressively or develop drug resistance. During a survey of fungal infections in 96 Chinese hospitals, researchers discovered a fungus, Rhodosporidiobolus fluvialis, not seen before in humans. The infection was resistant to the two most common antifungal drugs — fluconazole and caspofungin. In the lab, when the fungus was exposed to higher temperatures, it quickly mutated and developed resistance against a third drug, amphotericin B, making it essentially untreatable. This is a remarkable and truly unexpected finding, which bodes badly for the future.
https://www.nature.com/articles/s41564-024-01720-y?utm_source=Live+...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!