Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 15 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 1 Reply 0 Likes
Q: What exactly does ocean research do?Krishna: It is a vast subject. Anyways, I will try to explain briefly.Ocean research, or oceanography, is the scientific study of the ocean's physical,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 1 Reply 0 Likes
Q: How do UV rays kill microbes?Krishna: Ultraviolet germicidal irradiation (UVGI) is an established means of disinfection and can be used to prevent the spread of certain infectious diseases. …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
Impostor participants threaten the integrity of health research, and by extension, the policies and clinical decisions built on it, …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
Graphical abstract. Credit: Insect Biochemistry and Molecular…Continue
Comment
Since the late 1960s, spacecraft flying over Earth's poles have detected a stream of particles flowing from our atmosphere into space. Theorists predicted this outflow, which they dubbed the "polar wind," spurring research to understand its causes.
Some amount of outflow from our atmosphere was expected. Intense, unfiltered sunlight should cause some particles from our air to escape into space, like steam evaporating from a pot of water. But the observed polar wind was more mysterious. Many particles within it were cold, with no signs they had been heated—yet they were traveling at supersonic speeds.
Something had to be drawing these particles out of the atmosphere.
Scientists suspected that a yet-to-be-discovered electric field could be at work.
The hypothesized electric field, generated at the subatomic scale, was expected to be incredibly weak, with its effects felt only over hundreds of miles. For decades, detecting it was beyond the limits of existing technology. In 2016, researchers got to work inventing a new instrument they thought was up to the task of measuring Earth's ambipolar field.
The team's instruments and ideas were best suited for a suborbital rocket flight launched from the Arctic. In a nod to the ship that carried Ernest Shackleton on his famous 1914 voyage to Antarctica, the team named their mission Endurance. The scientists set a course for Svalbard, a Norwegian archipelago just a few hundred miles from the North Pole and home to the northernmost rocket range in the world.
Svalbard is the only rocket range in the world where you can fly through the polar wind and make the measurements that 're needed.
On May 11, 2022, Endurance launched and reached an altitude of 477.23 miles (768.03 kilometers), splashing down 19 minutes later in the Greenland Sea. Across the 322-mile altitude range where it collected data, Endurance measured a change in electric potential of only 0.55 volts.
A half a volt is almost nothing—it's only about as strong as a watch battery. But that's just the right amount to explain the polar wind.
Hydrogen ions, the most abundant type of particle in the polar wind, experience an outward force from this field 10.6 times stronger than gravity.
"That's more than enough to counter gravity—in fact, it's enough to launch them upwards into space at supersonic speeds.
Heavier particles also get a boost. Oxygen ions at that same altitude, immersed in this half-a-volt field, weigh half as much. In general, the team found that the ambipolar field increases what's known as the "scale height" of the ionosphere by 271%, meaning the ionosphere remains denser to greater heights than it would be without it.
It's like this conveyor belt , lifting the atmosphere up into space.
Endurance's discovery has opened many new paths for exploration. The ambipolar field, as a fundamental energy field of our planet alongside gravity and magnetism, may have continuously shaped the evolution of our atmosphere in ways we can now begin to explore. Because it's created by the internal dynamics of an atmosphere, similar electric fields are expected to exist on other planets, including Venus and Mars.
Any planet with an atmosphere should have an ambipolar field. Now that we've finally measured it, we can begin learning how it's shaped our planet as well as others over time.
Glyn A. Collinson et al, Earth's ambipolar electrostatic field and its role in ion escape to space, Nature (2024). DOI: 10.1038/s41586-024-07480-3
Part 2
Using observations from a NASA suborbital rocket, an international team of scientists, for the first time, has successfully measured a planet-wide electric field thought to be as fundamental to Earth as its gravity and magnetic fields.
Known as the ambipolar electric field, scientists first hypothesized over 60 years ago that it drove how our planet's atmosphere can escape above Earth's North and South Poles. Measurements from the rocket, NASA's Endurance mission, have confirmed the existence of the ambipolar field and quantified its strength, revealing its role in driving atmospheric escape and shaping our ionosphere—a layer of the upper atmosphere—more broadly.
Understanding the complex movements and evolution of our planet's atmosphere provides clues not only to the history of Earth but also gives us insight into the mysteries of other planets and determining which ones might be hospitable to life. A research paper on this topic is published in the journal Nature.
Part 1
This study establishes extremely important resources for the field.
It provides not only metabolic characteristics of various bat species with different diets, but also their intestinal morphology, and candidate genomic regions and protein structural differences that could be driving dietary adaptations.
The datasets will fuel future research that aims to differentiate mammalian dietary differences and could progress the development of novel therapeutics for a variety of metabolic diseases in humans.
Oh yes, if that happens, you can eat your favourite sweets or ice creams without thinking about any health consequences!
Sugar assimilation underlying dietary evolution of Neotropical bats, Nature Ecology & Evolution (2024). DOI: 10.1038/s41559-024-02485-7
Part 3
Looking to animals that have existed for millions of years allows us to start to catalog changes that have happened over evolution. What makes Neotropical leaf-nosed bats so unique to study is that this group is comprised of many different species with very diverse diets, making it feasible to find answers about how diet evolves. The hope is that we can extend this understanding to other mammals, including humans, where there may be ways to learn how to better protect our own health.
To uncover how bats diversified their diets, the research team traveled to the jungles of Central America, South America, and the Caribbean to conduct fieldwork over several years. These catch-and-release expeditions were focused on performing glucose tolerance tests—measuring the concentration of sugar in blood—on nearly 200 wild-caught bats across 29 species after a single feeding of one of three types of sugars associated with diets of insects, fruits, or nectar.
They observed various ways sugar is assimilated—absorbed, stored and used in the body—and how this process has become specialized due to different diets.
The mechanism for maintaining blood sugar levels within a narrow, healthy range is called glucose homeostasis, which is typically regulated by the hormone insulin and is what goes awry in diabetes. Different species of leaf-nosed bats reveal a spectrum of adaptations to glucose homeostasis, ranging from changes in intestinal anatomy to genetic alterations for proteins that transport sugar from blood to cells.
Fruit bats have honed their insulin signaling pathway to lower blood sugar. On the other extreme, nectar bats can tolerate high blood glucose levels, similar to what is observed in people with unregulated diabetes. They have evolved a different mechanism, and it does not seem to depend on insulin.
Although precisely how nectar bats are managing glucose is still under investigation, the researchers found potential clues for alternative metabolic strategies for glucose regulation. Bats with sugar-rich diets were observed to have longer portions of their intestines and to have intestinal cells with greater surface areas for absorbing nutrients from food, compared to bats with other diets. In addition, nectar bats, separate from fruit bats, have a continual expression of a gene responsible for sugar transport, a trait also observed in a species of hummingbird.
Part 2
Humans must regulate blood sugar concentrations to stay healthy and to fuel our cells. Too little or too much can cause serious health complications, and high blood sugar is a hallmark of the metabolic condition, diabetes. New research may enable potential solutions to metabolic disease by turning to evolution and to bats.
Published in Nature Ecology and Evolution, the study reports the highest naturally occurring blood sugar concentrations in mammals ever observed, a finding that suggests bats have evolved strategies to survive, and even thrive, with this extreme trait.
This new study reports blood sugar levels that are the highest we have ever seen in nature—what would be lethal, coma-inducing levels for mammals, but not for bats.
Thirty million years ago, the Neotropical leaf-nosed bat survived solely on insects. Since then, these bats have diversified into many different species by changing what they eat. From insects, different lineages now specialize in diets including fruits, nectar, meat, and everything in between—even just blood.
The new study reports the highest naturally occurring blood sugar concentrations in mammals ever observed, a finding that suggests bats have evolved strategies to survive, and even thrive, with this extreme trait. Credit: Stowers Institute for Medical Research
Part 1
In a recent study, researchers found that beliefs and assumptions people have about COVID-19 vaccines seemed to influence their vaccination experience—including side effects and, in some cases, immune response.
While most people can appreciate that vaccination is an amazing achievement, their enthusiasm might falter when it comes time to schedule and receive their own. And new research suggests that might influence how the vaccine affects them.
Researchers studied the effects of different types of positive and negative mindsets regarding the COVID-19 vaccine.
Their work, published in the journal Brain, Behavior & Immunity—Health, suggests that a positive mindset is associated with more positive outcomes, such as less stress and side effects, better mood, and possibly even better immune response.
*Details of the findings include: All positive vaccine-related mindsets predict lower anxiety on the day of the appointment, and lower stress and sadness—and more happiness—in the days around vaccination.
*A positive mindset about the efficacy of the vaccine and how the body will respond to vaccination were linked to fewer negative physical side effects.
*The vaccine mindset that side effects indicate "the vaccine is working" was associated with better immune response—specifically, higher antibodies six months later.
Many people will be surprised by these findings, but they shouldn't be," said the authors. Our brains are connected to every physiological system in our bodies, and we know from decades of previous research on placebo effects and psychoneuroimmunology that our mindsets can influence physiological outcomes, including the immune system.
Darwin A. Guevarra et al, Examining the association of vaccine-related mindsets and post-vaccination antibody response, side effects, and affective outcomes, Brain, Behavior, & Immunity - Health (2024). DOI: 10.1016/j.bbih.2024.100818
**
Most people infected with eastern equine encephalitis don't develop symptoms, but some can come down with fever or swelling of the brain and about one third of people infected die.
It is caused by a virus and is not very common around the world. The virus typically spreads in certain swamps.
About 2 in 10 people infected with West Nile virus develop symptoms, which can include fever and swelling of the brain. About 1 in 10 people who develop severe symptoms die.
Malaria infected nearly 250 million people globally in 2022 and killed more than 600,000, mostly children. It is caused by a parasite carried by mosquitoes and mainly infects people in tropical regions, especially Africa. A vaccination campaign has been launched in recent months that health officials hope will help reduce cases and deaths.
Also known as "break-bone fever" because it can be so painful, dengue is becoming more common. The World Health Organization says that about half the world's population is at risk of getting the disease, and there are 100 million to 400 million infections every year. Not everyone gets symptoms, which can include fever, severe headaches and pain in the muscles and joints.
Source: News agencies
Part 2
**
The world's deadliest animal can be squashed flat with a quick slap: It's the mosquito.
The buzzing insects are more than annoying—they spread disease. When they bite and drink blood from a person or animal they can pick up viruses or germs too. If they can go on to bite someone or something else, they deposit the germ right under the skin.
The best way to avoid getting sick is of course to avoid getting bitten, which means taking steps like using repellent, wearing clothing with long sleeves and long pants and staying indoors when the mosquitoes are out. Local health departments also work to reduce mosquito numbers, including spraying neighborhoods with insecticide.
Here's a look at some common—and not so common—mosquito-borne diseases.
Part 1
New research presented at the ESC Congress 2024 in London, UK (30 August—2 September) shows that women in the menopause transition period show changes in their blood cholesterol profiles which could have an adverse impact on their cardiovascular health.
There is an increase in 'bad' low-density type lipoprotein (LDL) particles and a decrease in 'good' high-density lipoprotein particles (HDL) that takes place during and after the menopause transition. Taken together, these changes suggest that menopause is associated with a transition to a higher-risk lipoprotein profile that could be more likely to cause cardiovascular disease, such as coronary artery disease.
Cardiovascular disease (CVD) is the biggest killer of women, despite the misconception that CVD is a "man's disease"—40% of all deaths in women are from CVD. While women develop cardiovascular disease (CVD) approximately ten years later than men, risk of CVD in women rises after menopause.
In the present study, the researchers found that found that menopause is associated with adverse changes in lipoprotein profiles, with the most pronounced changes found to be in increases in 'bad' LDL-particles and subfractions observed for peri-menopausal women. When looked at together, these changes could help explain the increase of cardiovascular disease in post-menopausal women and help determine if earlier interventions are warranted.
Tubal sterilization is thought to be a permanent form of birth control and is the most common method of contraception in several parts of the world. But a new study reports that tubal surgery fails often enough that some other forms of birth control are usually more effective.
The authors found that 3–5% of women in the US who had their tubes tied later reported an unplanned pregnancy. This failure rate led the authors to suggest that patients who really want to avoid future pregnancy should instead use a contraceptive arm implant or intrauterine device (IUD).
The paper appears August 27 in NEJM Evidence.
Schwarz, E. B. et al. Pregnancy after Tubal Sterilization in the United States, 2002 to 2015, NEJM Evidence (2024). DOI: 10.1056/EVIDoa2400023. evidence.nejm.org/doi/10.1056/EVIDoa2400023
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!