Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 4 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 4 hours ago. 1 Reply 0 Likes
Expert guidance"Cyber security" may sound like a far-off worry for big corporations or telcos, but that's far from the case. Cyber security simply means the practice of safeguarding your sensitive…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 6 hours ago. 1 Reply 0 Likes
It's well established that urban tree cover provides numerous environmental and psychological benefits to city dwellers. Urban trees may also bolster education outcomes and their loss could…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 2 Replies 0 Likes
A Physicist recently told me this story and I think this is very interesting and therefore, am posting it here...Einstein deserves all the hype he gets. But gravitational waves are an interesting…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 2 Replies 0 Likes
Q: What constitutes ‘hurting religious sentiments’? Krishna: Deliberate and malicious acts, intended to outrage religious feelings or any class by insulting its religion or religious beliefs –…Continue
Comment
The researchers found the incorporation of trans fats through SPT increased lipoprotein secretion from the liver, which then promoted the formation of atherosclerotic plaques.
In the end, they saw mice consuming a high trans fat diet were producing trans fat-derived sphingolipids that promoted the secretion of VLDL from the liver into the bloodstream. This, in turn, accelerated the buildup of atherosclerotic plaques and the development of fatty livers and insulin dysregulation. High cis-fat diet mice, on the other hand, experienced shorter-term, less harmful effects like weight gain.
Jivani M. Gengatharan et al, Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis, Cell Metabolism (2024). DOI: 10.1016/j.cmet.2024.10.016
Part 2
Cholesterol may not be the only lipid involved in trans fat-driven cardiovascular disease
Excess cholesterol is known to form artery-clogging plaques that can lead to stroke, arterial disease, heart attack, and more, making it the focus of many heart health campaigns. Fortunately, this attention to cholesterol has prompted the development of cholesterol-lowering drugs called statins and lifestyle interventions like dietary and exercise regimens. But what if there's more to the picture than just cholesterol?
New research from Salk Institute scientists describes how another class of lipids, called sphingolipids, contributes to arterial plaques and atherosclerotic cardiovascular disease (ASCVD). Using a longitudinal study of mice fed high-fat diets—with no additional cholesterol—the team tracked how these fats flow through the body and found the progression of ASCVD induced by high trans fats was fueled by the incorporation of trans fats into ceramides and other sphingolipids. Knowing that sphingolipids promote atherosclerotic plaque formation reveals another side of cardiovascular disease in addition to cholesterol.
The findings, published in Cell Metabolism, open an entirely new avenue of potential drug targets to address these diseases and adverse health events like stroke or heart attacks.
When dietary fats enter the body through the foods we eat, they must be sorted and processed into compounds called lipids, such as triglycerides, phospholipids, cholesterol, or sphingolipids. Lipoproteins—like the familiar HDL, LDL, and VLDL—are used to transport these lipids through the blood.
Sphingolipids have become useful biomarkers for diseases like ASCVD, non-alcoholic fatty liver disease, obesity, diabetes, peripheral neuropathy, and neurodegeneration. However, it is unclear exactly how the incorporation of different dietary fats into sphingolipids leads to the development of ASCVD.
The fate of dietary fat is often determined by the protein that metabolizes it.
The team suspected that trans fats were being incorporated into sphingolipids by SPT, which, in turn, would promote the excess lipoprotein secretion into the bloodstream that causes ASCVD.
To test their theory, they compared the processing of two different fats, cis fats and trans fats. The difference between these two comes down to the placement of a hydrogen atom; cis fats, found in natural foods like fish or walnuts, have a kink in their structure caused by two side-by-side hydrogen atoms, whereas trans fats, found in processed foods like margarine or anything fried, have a straight-chain structure caused by two opposing hydrogen atoms. Importantly, the kink in cis fats means they cannot be tightly packed—a positive feature for avoiding impenetrable clogs.
The researchers combined mouse model dietary manipulation with metabolic tracing, pharmacological interventions, and physiological analyses to answer their question—what is the link between trans fats, sphingolipids, and ASCVD?
Part 1
Researchers have made a fundamental discovery: the NMDA receptor (NMDAR)—long studied primarily for its role in learning and memory—also plays a crucial role in stabilizing brain activity.
By setting the "baseline" level for activity in neural networks, the NMDAR helps maintain stable brain function amidst continuous environmental and physiological changes. This discovery may lead to innovative treatments for diseases linked to disrupted neural stability, such as depression, Alzheimer's disease, and epilepsy.
In recent decades, brain research has mainly focused on processes that allow information encoding, memory, and learning, based on changes in synaptic connections between nerve cells. But the brain's fundamental stability, or homeostasis, is essential to support these processes.
This comprehensive project used three primary research methods: electrophysiological recordings from neurons in both cultured cells (in vitro) and living, behaving mice (in vivo) within the hippocampus, combined with computational modeling (in silico). Each approach provided unique insights into how NMDARs contribute to stability in neural networks.
These findings suggest that ketamine's actions may stem from this newly discovered role of NMDAR: reducing the activity baseline in overactive brain regions seen in depression, like the lateral habenula, without interfering with homeostatic processes. This discovery could reshape our understanding of depression and pave the way for developing innovative treatments.
Antonella Ruggiero et al, NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics, Neuron (2024). DOI: 10.1016/j.neuron.2024.10.014
The Atacama Desert, which runs along the Pacific Coast in Chile, is the driest place on the planet and, largely because of that aridity, hostile to most living things. Not everything, though—studies of the sandy soil have turned up diverse microbial communities. Studying the function of microorganisms in such habitats is challenging, however, because it's difficult to separate genetic material from the living part of the community from genetic material of the dead.
A new separation technique can help researchers focus on the living part of the community. This week in Applied and Environmental Microbiology, an international team of researchers describes a new way to separate extracellular (eDNA) from intracellular (iDNA) genetic material. The method provides better insights into microbial life in low-biomass environments, which was previously not possible with conventional DNA extraction methods.
The microbiologists used the novel approach on Atacama soil samples collected from the desert along a west-to-east swath from the ocean's edge to the foothills of the Andes mountains. Their analyses revealed a variety of living and possibly active microbes in the most arid areas.
Alexander Bartholomäus et al. Inside the Atacama Desert: uncovering the living microbiome of an extreme environment, Applied and Environmental Microbiology (2024). DOI: 10.1128/aem.01443-24 journals.asm.org/doi/10.1128/aem.01443-24
A new study has made significant advances in understanding how atmospheric electric field measurements can help predict severe weather events.
The research paper, titled "Understanding heavy precipitation events in southern Israel through atmospheric electric field observations," is now published in Atmospheric Research.
By closely examining low-pressure winter weather systems, known as "Cyprus Lows," in the arid Negev Desert of southern Israel, this research reveals new insights into the role of the electric field in anticipating heavy precipitation.
Focusing on "wet" Cyprus Lows—situations where rain falls as a cold front moves through—researchers observed substantial increases in the potential gradient of the electric field. Minute-by-minute data showed potential gradient values rising sharply from typical fair-weather levels (about 100–200 volts per meter) to hundreds and even thousands of volts per meter during rainfall.
These surges occurred as convective clouds passed overhead, indicating that different cloud types produce unique electric field patterns. The study also highlighted that factors beyond rain intensity, such as cloud structure and the electrical charge of rain droplets, play roles in these electric fluctuations.
Through these findings, the researchers identified how electric field variations correlate with specific weather conditions. This enhanced understanding of electric field responses to weather events could significantly improve nowcasting systems for predicting extreme weather, particularly in regions prone to flash floods and sudden weather changes.
This research demonstrates how electric field variations can serve as indicators of shifting weather patterns, allowing us to anticipate severe weather events in real-time.
Roy Yaniv et al, Understanding heavy precipitation events in southern Israel through atmospheric electric field observations, Atmospheric Research (2024). DOI: 10.1016/j.atmosres.2024.107757
But where is the salt coming from? The explanation: The groundwater from the surrounding aquifers penetrates into the saline lake sediments, leaching out extremely old and thick layers of rock consisting mainly of the mineral halite. It then flows into the lake as brine.
Because the density of this brine is somewhat lower than that of the water in the Dead Sea, it rises upwards like a jet. It looks like smoke, but it's a saline fluid.
Contact with the lake water causes the dissolved salts, especially the halite, to spontaneously crystallize after emerging from the lake bed, where it forms the vents observed for the first time in the world. These can grow by several centimeters within a single day. Many of the slender chimneys were one to two meters high, but they also include giants more than seven meters high, with a diameter of more than 2–3 meters.
These white smokers are especially important because they can serve as an early warning indicator for sinkholes. These are subsidence craters up to 100 meters wide and up to 20 meters deep, thousands of which have formed along the Dead Sea in recent decades.
C. Siebert et al, A new type of submarine chimneys built of halite, Science of The Total Environment (2024). DOI: 10.1016/j.scitotenv.2024.176752
Part 2
Researchers have discovered meter-high chimneys on the floor of the Dead Sea. These are formed by the spontaneous crystallization of minerals from groundwater with an extremely high salt content flowing up out of the lake floor, they report in the journal Science of the Total Environment.
Discovered for the first time, these vents are an important early warning indicator for sinkholes. These subsidence craters form in the area surrounding the Dead Sea and pose a significant hazard to the population.
While black smokers along the mid-ocean ridge emit hot water containing sulfides at a depth of several thousand meters, the researchers in the Dead Sea discovered that highly saline groundwater flows out through the chimneys at the bottom of the lake.
Part 1
Quantum entanglement is a phenomenon in which particles become interconnected such that the state of one instantly influences the state of the other, regardless of the distance between them. Entanglement is an important phenomenon for many quantum technology applications because it can lead to secure quantum communications and high-dimensional quantum computing.
As photons, quanta of light, can propagate extremely fast while carrying quantum information, the entangling of pairs of photons via nonlinear optics is an established procedure.
Scientists at MPL have recently tackled the issue of establishing entanglement between very different entities, such as traveling sound waves, phonons, and optical photons. The proposed optoacoustic entanglement scheme is based on Brillouin scattering. It is particularly resilient, suitable for integration into quantum signal processing schemes and implementable at high environmental temperatures.
Entanglement has historically been fascinating at many different levels, as it strongly connects to our understanding of the fundamental laws of nature.
Quantum correlations among particles can persist even when separated by large distances. At the practical level, quantum entanglement is at the heart of many emerging quantum technologies. In the optical domain, entanglement of photons is fundamental to secure quantum communication methods or quantum computing schemes.
Photons, however, are volatile. Therefore, feasible alternatives are being sought for certain applications, such as quantum memory or quantum repeater schemes. One such alternative is the acoustic domain, where quanta are stored in acoustic or sound waves.
Scientists at the MPL have now indicated a particularly efficient way in which photons can be entangled with acoustic phonons: While the two quanta travel along the same photonic structures, the phonons move at a much slower speed. The underlying effect is the optical nonlinear effect known as Brillouin-Mandelstam scattering. It is responsible for coupling quanta at fundamentally different energy scales.
In their study, the scientists showed that the proposed entangling scheme can operate at temperatures in the tens of Kelvin. This is much higher than those required by standard approaches, which often employ expensive equipment such as dilution fridges. The possibility of implementing this concept in optical fibers or photonic integrated chips makes this mechanism of particular interest for use in modern quantum technologies.
Part 2
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light (MPL) have now demonstrated a particularly efficient way in which photons can be entangled with acoustic phonons.
The researchers were able to demonstrate that this entanglement is resilient to external noise, the usual pitfall of any quantum technology to date. They published their research in Physical Review Letters.
Changlong Zhu et al, Optoacoustic Entanglement in a Continuous Brillouin-Active Solid State System, Physical Review Letters (2024). DOI: 10.1103/PhysRevLett.133.203602
Cancer has a high death rate with delayed diagnosis of the disease being one of the main reasons for its fatality. Early diagnosis of cancer is vital to improving patient outcomes and in recent years, the development of diagnostic tools to detect early-stage cancer has gained a lot of attention.
Cancer cells utilize specific micro-ribonucleic acids (miRNAs)-small noncoding RNAs to regulate gene expression and promote tumor formation. While circulating miRNAs are viable biomarkers of early cancer disease, the identification of cancer-related miRNAs in blood and other body fluids remains a challenge.
In this light, a team of researchers have focused their efforts on nanowire-based miRNA extraction and machine learning (ML) analysis to detect cancer-associated miRNAs in urine. Their research findings were published online in the journal Analytical Chemistry on October 18, 2024.
Circulating miRNAs in the blood are mostly encapsulated in extracellular vesicles (EVs) and carry critical regulatory information. These miRNAs differ between healthy individuals and those with cancer. By utilizing zinc oxide (ZnO) nanowires to capture and extract miRNAs in urine, the research group has attempted to develop a non-invasive cancer detection tool.
Initially, the scientists utilized ZnO nanowires to capture EVs in urine samples and incorporated microarray technology to identify specific gene sequences in EV-encapsulated miRNAs. The ultracentrifugation technique was further used to compare and validate the efficiency of miRNA capture by nanowires.
The results revealed that EVs containing miRNAs, including exosomes-unique subtypes of EVs with sizes ranging from 40 nm to 200 nm, were efficiently captured on nanowires. Moreover, the presence of 2,486 miRNA species was confirmed during the miRNA profiling analysis of 200 urine samples.
Driven by the discovery of more than 2,000 miRNA species in urine samples, Yasui and the team hypothesized that most of the miRNAs in blood could be transferred to urine during the filtration process in kidneys. Subsequently, they employed a logistic regression classifier constructed using ML to identify lung cancer-associated urinary miRNA ensembles. The findings revealed one particular urinary miRNA ensemble, composed of 53 miRNA species, that could differentiate cancer and noncancer subjects with very high specificity and sensitivity.
Takao Yasui et al, Early Cancer Detection via Multi-microRNA Profiling of Urinary Exosomes Captured by Nanowires, Analytical Chemistry (2024). DOI: 10.1021/acs.analchem.4c02488
© 2024 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!