Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 14 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
Maternal gut microbiome composition may be linked to preterm birthsPeople associate several things regarding pregnancy to eclipses and other natural phenomenon. They also associate them with papaya…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Playwright Tom Stoppard, in "Rosencrantz and Guildenstern are Dead," provides one of the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 6. 1 Reply 0 Likes
Q: Why do some people find comfort in the idea of being "recycled" into nature rather than believing in an afterlife?Krishna: Because ‘"recycled" into nature’ is an evidence based fact and people…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 2. 1 Reply 0 Likes
Don't blame the criminals for everything they do. A suspected perpetrator who can barely remember his name, several traffic violations committed by a woman in her mid-fifties who is completely…Continue
Comment
Bull elephants gather in the evening coolness to drink. After a spell, a senior male lifts his head and turns from the waterhole. With ears flapping gently, he lets out a deep, resonant rumble.
One by one, the others respond, their voices overlapping in a sonorous, infrasonic chorus that whispers across the savanna. This elephant barbershop quartet conveys a clear message: It's time to move on.
Gradually, the elephants shift, their massive bodies swaying as they follow their rumbling leader to the next stop on their nocturnal wanderings.
For the first time, scientists have documented male elephants using "let's go" rumbles to signal the start of group departures from the Mushara waterhole in Etosha National Park, Namibia. The vocalizations are initiated by the most socially integrated, and often the most dominant, males in close-knit social groups.
The findings, detailed in the open-access journal PeerJ, are surprising because this behavior was previously thought to be exclusive to female elephants in family groups.
Male elephants, typically considered to have loose social ties, engaging in such sophisticated vocal coordination to trigger action is surprising.
The "let's go" rumbles observed in male elephants bear striking similarities to those previously recorded in female elephants. The researchers hypothesized that male elephants likely learn the behaviour when they are young.
In the case of both male and female elephants, the initiator's call is followed by the next individual's rumble, with each elephant waiting for the preceding call to nearly finish before adding their own voice. This creates a harmonious, turn-taking pattern akin to a barbershop quartet.
It's very synchronized and ritualized. When one goes high, the other goes low, and they have this vocal space where they're coordinating.
PeerJ (2024). doi.org/10.7717/peerj.17767
A second study by researchers also found evidence of long-lasting ovary proteins in young mice, including proteins that were present before the mice were born. Certain long-lasting proteins, such as ZP3, were identified for future studies.
Some of these hardy proteins were present in the cell mitochondria, where a cell's energy is generated. Since mitochondria are inherited as part of the egg cell a mammal grows from, it could ensure these critical organelles can remain functional as they're passed from mother to offspring.
Eventually, even these proteins that live way beyond the norm fade away and die, the researchers report. That could be connected to the natural decline in a woman's ability to have children, the study suggests – and could ultimately point to ways to treat or at least better diagnose infertility.
The findings from these studies of mice still need to be replicated in humans, but if they are, it would represent a significant step forward in our understanding of fertility and how oocytes can be kept in a healthy state.
https://elifesciences.org/reviewed-preprints/93172
https://www.nature.com/articles/s41556-024-01442-7
Part 2
On May 30th when a rock that NASA's Curiosity Mars rover drove over cracked open to reveal something never seen before on the Red Planet: yellow sulfur crystals.
Since October 2023, the rover has been exploring a region of Mars rich with sulfates, a kind of salt that contains sulfur and forms as water evaporates. But where past detections have been of sulfur-based minerals—in other words, a mix of sulfur and other materials—the rock Curiosity recently cracked open is made of elemental (pure) sulfur. It isn't clear what relationship, if any, the elemental sulfur has to other sulfur-based minerals in the area.
While people associate sulfur with the odor from rotten eggs (the result of hydrogen sulfide gas), elemental sulfur is odorless. It forms in only a narrow range of conditions that scientists haven't associated with the history of this location. And Curiosity found a lot of it—an entire field of bright rocks that look similar to the one the rover crushed.
It's one of several discoveries Curiosity has made while off-roading within Gediz Vallis channel, a groove that winds down part of the 3-mile-tall (5-kilometer-tall) Mount Sharp, the base of which the rover has been ascending since 2014. Each layer of the mountain represents a different period of Martian history. Curiosity's mission is to study where and when the planet's ancient terrain could have provided the nutrients needed for microbial life, if any ever formed on Mars.
Source: NASA
Comparing individual patient blood samples to their biopsies, the team identified 158 genes that were differentially expressed across all four organs during cases of rejection. That's nearly 20 times higher than what was expected by chance.
This discovery is pivotal as it allows us to develop strategies to enhance the success rates of all transplants.
Some of these shared biomarkers are involved in the secretion of proteins that stimulate white blood cells, enzymes that induce cell death, receptors on cells that allow materials in and out, and bone marrow cells involved in the immune response.
These findings demonstrate a "unifying pan-organ molecular marker".
The research team has made an interactive website that allows scientists around the world to compare possible biomarkers of transplant rejection against other methods, providing a much-needed standardized evaluation. This atlas has led to the development of a proof of principle for a universal blood test that can predict the likelihood of transplant rejection before it occurs.
https://www.nature.com/articles/s41591-024-03030-6
Part 2
Scientists have figured out a non-invasive way to determine if a transplanted organ is failing to take in a patient – no matter if it's a kidney, liver, lung, or heart.
It's the first time that biomarkers of dysfunction have matched across multiple types of transplanted organs, and it hints at the possibility of a blood test that can diagnose early rejection in all transplant scenarios – a tool that doesn't yet exist.
If more research is done, the newly identified biomarkers could even be used to differentiate between various types of organ rejection, including immune issues, inadequate blood supply, or maladaptive repairs.
The survival of a transplant differs between organs, with a long-term success rate of 59 percent for the lungs, 80 percent for the liver, 82 percent for the kidney, and 73 percent for the heart. Rejection can occur at any time after the surgery, even years later, creating a lifelong threat for patients.
Usually, doctors suspect transplant rejection when there are signs that the organ in question is not working at full capacity. But sometimes, patients might not experience any symptoms before failure occurs, and an invasive biopsy is the only way to tell for sure what is going on.
In recent years, several studies have investigated whether there are signs of organ rejection flowing through a patient's blood or urine that can be accessed more easily than via surgery. But potential biomarkers that have been identified are not yet in clinical practice, and they aren't predictive of all organ rejections, usually just one type.
In the worst cases, the oxygen becomes so depleted that the microbes suffocate and die, often taking larger species with them. Populations of microbe that don't rely on oxygen then feed on the bounty of dead organic material, growing to a density that reduces light and limits photosynthesis to trap the entire water body in a vicious, suffocating cycle called eutrophication.
Aquatic deoxygenation is also driven by an increase in the density difference between layers in the water column. This increase can be attributed to surface waters warming faster than deeper waters and melting ice decreasing surface salinity in the oceans.
The more distinctly defined those layers are, the less movement there is between those layers of the water column, which the vertical strata of underwater life relies upon. These density fluctuations power the movement of oxygenated surface water into the deep, and without this temperature-powered freight, ventilation in the lower depths of aquatic environments grinds to a halt.
All this has wrought havoc on aquatic ecosystems, many of which our own species rely on for our own food, water, incomes, and wellbeing.
The paper's authors call for a concerted, global effort to monitor and research deoxygenation of the 'blue' parts of our planet, along with policy efforts to prevent rapid deoxygenation and the associated challenges we are already beginning to face.
"Reducing greenhouse gas emissions, nutrient runoff and organic carbon inputs (for example, raw sewage loading) would slow or potentially reverse deoxygenation," they write.
"The expansion of the planetary boundaries framework to include deoxygenation as a boundary [will help] to focus those efforts."
https://www.nature.com/articles/s41559-024-02448-y?utm_medium=affil...
Part 2
**
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!