SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 11 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Getting rid of plastic the natural way

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 9 Replies

Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue

The science of laughing and crying

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 2 Replies

Q: Does laughing really help people?Krishna:My reply is going to surprise you.You might have heard this…In modern society, fierce competition and socioeconomic interaction stress the quality of life,…Continue

Mom's X chromosome could speed up brain aging

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Women are born with two X chromosomes and inherit one from each parent. But in every cell of their body, just one X chromosome is needed—so the other is randomly inactivated. Some cells use only a…Continue

Your Biological Age Can Be Different From Your Actual (Chronological)Age!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 9 Replies

Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps.  "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on November 13, 2023 at 11:49am

Each of Your Nostrils Smells The World Uniquely, Study Reveals

It's not immediately noticeable to us, but our two nostrils are actually working independently in some ways and appear to have their own separate sense of smell.

That's the conclusion of a new study from researchers in the US that could teach us much more about the brain and how senses are processed. The findings build on earlier studies in animals and humans, indicating that our brains might be capable of processing each nostril's input individually as well as synthesizing them into one complete whole.

To look more closely at smelling in stereo, the researchers from the University of Pennsylvania, the Barrow Neurological Institute, and Ohio State University enlisted the help of 10 epilepsy patients who had already had electrodes implanted in their brains.

One of three different scents, as well as a control consisting of pure air, was puffed into either nostril or both together in each trial. After several seconds, the subject was asked to identify the smell, then state which nostril they used to detect it - left, right, or both. Meanwhile, the researchers collected data on the brain's response via the electrodes.

The team made a number of interesting observations. For example, when the same smell was presented to each nostril in turn, the resulting brain activity was similar, but not identical, suggesting some independence.

What's more, smelling through two nostrils together created two distinct bursts of activity. Though the time delay between them was very short, it was there, and the researchers suggest that this again points to the nostrils not always being in unison. Two nostrils were better than one when it came to identifying odors and identifying them more quickly, which hints that there's definitely some benefit to having two nostrils rather than one – as with eyes and ears. The analysis concentrated on the piriform cortex (PC) brain region, where the sense of smell is handled and interpreted. As we already know, our different senses are closely interconnected too, which means the findings may have implications beyond smell.

https://www.cell.com/current-biology/fulltext/S0960-9822(23)01379-9

Comment by Dr. Krishna Kumari Challa on November 13, 2023 at 11:44am

Liver cells age differently depending on where they are in the organ

 People age at different rates. But what about inside of a living body? Do all cells age in the same way? And does the location of a cell in the organ make a difference to the ageing process? Researchers  have now shown in the liver of mice that liver cells age differently depending on where they are located in the organ.

The liver is largely made up of a single type of cell, the hepatocyte. Depending on where they are in the liver, they have different roles. Near the portal vein, where fresh, oxygen-rich blood enters the liver, hepatocytes use the oxygen to process fats in their mitochondria and produce energy. In contrast, carbohydrates are broken down in the less oxygen-rich regions of the liver. "In the liver, the position of the hepatocyte in the organ plays a crucial role. That's why the liver was the perfect model for us to investigate whether location also makes a difference in ageing.

The location of the liver cells has a strong influence on the ageing process. In the region of the liver where the liver cells use oxygen for energy production in their mitochondria, this process deteriorates significantly with age. In the central, oxygen-deprived area of the liver, however, the researchers found no change in the mitochondria, but a change in the cells' fat metabolism.

It is important where a cell ages. They age differently depending on where they are located and what their function is, according to these researchers. 

https://www.mpg.de/21085057/1109-balt-location-location-location-15...

Comment by Dr. Krishna Kumari Challa on November 13, 2023 at 11:39am

Semantic hearing: Future of intelligent hearables

Comment by Dr. Krishna Kumari Challa on November 12, 2023 at 9:11am

 They began synthesizing and testing derivatives with slight changes to the region that binds to ergosterol and cholesterol, while also boosting the kinetics of the ergosterol-removing process to maintain efficacy.

 The researchers tested the most promising derivatives – first with in vitro assays, quickly assessing the efficacy in killing fungi; then moving to cell cultures and eventually live mice, assessing toxicity.

The researchers tested this molecule against over 500 different clinically relevant pathogen species in four different locations. And this molecule completely surprised us by either mimicking or surpassing the efficacy of current clinically available antifungal drugs.

The researchers tested AM-2-19 in human blood and kidney cells to screen for toxicity. They also tested AM-2-19 in mouse models of three common, stubborn fungal infections and saw high efficacy.

Maji, A. et al. Tuning sterol extraction kinetics yields a renal-sparing polyene antifungal. Nature https://doi.org/10.1038/s41586-023-06710-4 (2023).

Part 2

Comment by Dr. Krishna Kumari Challa on November 12, 2023 at 9:07am

New antifungal molecule kills fungi without toxicity in human cells, mice

A new antifungal molecule, devised by tweaking the structure of prominent antifungal drug Amphotericin B, has the potential to harness the drug’s power against fungal infections while doing away with its toxicity, researchers  reported in the journal Nature.

Amphotericin B, a naturally occurring small molecule produced by bacteria, is a drug used as a last resort to treat fungal infections. While AmB excels at killing fungi, it is reserved as a last line of defense because it also is toxic to the human patient – particularly the kidneys.

This work is a demonstration that, by going deep into the fundamental science, you can take a billion-year head start from nature and turn it into something that hopefully is going to have a big impact on human health.

These researchers spent years exploring AmB in hopes of making a derivative that can kill fungi without harm to humans. In previous studies, they developed and leveraged a building block-based approach to molecular synthesis and teamed up with a group specializing in molecular imaging tools called solid-state nuclear magnetic resonance. They  uncovered the mechanism of the drug: AmB kills fungi by acting like a sponge to extract ergosterol from fungal cells.

The researchers also found that that AmB similarly kills human kidney cells by extracting cholesterol, the most common sterol in people. The researchers also resolved the atomic-level structure of AmB sponges when bound to both ergosterol and to cholesterol.

Using this structural information along with functional and computational studies, they achieved a significant breakthrough in understanding how AmB functions as a potent fungicidal drug. This provided the insights to modify AmB and tune its binding properties, reducing its interaction with cholesterol and thereby reducing the toxicity.

Part 1

Comment by Dr. Krishna Kumari Challa on November 12, 2023 at 8:47am

How animals get their stripes and spots

Nature has no shortage of patterns, from spots on leopards to stripes on zebras and hexagons on boxfish. But a full explanation for how these patterns form has remained elusive.

Now engineers  have shown that the same physical process that helps remove dirt from laundry could play a role in how tropical fish get their colorful stripes and spots. Their findings were published Nov. 8 in the journal Science Advances.

Biologists have previously shown that many animals evolved to have coat patterns to camouflage themselves or attract mates. While genes encode pattern information like the color of a leopard’s spots, genetics alone do not explain where exactly the spots will develop, for example.

In 1952, before biologists discovered the double helix structure of DNA, Alan Turing, the mathematician who invented modern computing, proposed a bold theory of how animals got their patterns.

Turing hypothesized that as tissues develop, they produce chemical agents. These agents diffuse through tissue in a process similar to adding milk to coffee. Some of the agents react with each other, forming spots. Others inhibit the spread and reaction of the agents, forming space between spots. Turing’s theory suggested that instead of complex genetic processes, this simple reaction-diffusion model could be enough to explain the basics of biological pattern formation.

Surely Turing’s mechanism can produce patterns, but diffusion doesn’t yield sharp patterns.

Where particles  form sharply defined stripes,  the process known as diffusiophoresis plays a role in nature’s pattern formation.

Diffusiophoresis happens when a molecule moves through liquid in response to changes, such as differences in concentrations, and accelerates the movement of other types of molecules in the same environment. While it may seem like an obscure concept to non-scientists, it’s actually how laundry gets clean.

One recent study showed that rinsing soap-soaked clothes in clean water removes the dirt faster than rinsing soap-soaked clothes in soapy water. This is because when soap diffuses out of the fabric into water with lower soap concentration, the movement of soap molecules draws out the dirt. When the clothes are put in soapy water, the lack of a difference in soap concentration causes the dirt to stay in place.

The movement of molecules during diffusiophoresis, as researchers observed in their simulations, always follows a clear trajectory and gives rise to patterns with sharp outlines. To see if it may play a role in giving animals their vivid patterns, researchers ran a simulation of the purple and black hexagonal pattern seen on the ornate boxfish skin using only the Turing equations. The computer produced a picture of blurry purple dots with a faint black outline. Then the team modified the equations to incorporate diffusiophoresis. The result turned out to be much more similar to the bright and sharp bi-color hexagonal pattern seen on the fish.

The research team’s theory suggests that when chemical agents diffuse through tissue as Turing described, they also drag pigment-producing cells with them through diffusiophoresis—just like soap pulls dirt out of laundry. These pigment cells form spots and stripes with a much sharper outline.

 Benjamin Alessio et al, Diffusiophoresis-Enhanced Turing Patterns, Science Advances (2023). DOI: 10.1126/sciadv.adj2457www.science.org/doi/10.1126/sciadv.adj2457

Comment by Dr. Krishna Kumari Challa on November 11, 2023 at 9:53am

World's First Entire Eye Transplant

A team of surgeons in New York has performed the world's first transplant of an entire eye in a procedure widely hailed as a medical breakthrough, although it isn't yet known whether the man will ever see through the donated eye. The groundbreaking surgery involved removing part of the face and the whole left eye – including its blood supply and optic nerve – of a donor and grafting them onto a lineworker from Arkansas who survived a 7,200-volt electric shock in June 2021.

Aaron James, 46, suffered extensive injuries including the loss of his left eye, his dominant left arm above the elbow, his nose and lips, front teeth, left cheek area and chin.
He was referred to NYU Langone Health, a leading medical center for facial transplants, which carried out the procedure on May 27.

Transplanting an entire eye has long been a holy grail of medical science, and though researchers have had some success in animals – where they have restored partial vision – it's never before been performed in a living person.
The transplanted left eye appears very healthy, said retinal ophthalmologist.
It has a good blood supply, is maintaining its pressure, and is generating an electrical signal, though James is not yet able to see. But the doctors have a lot of hope.
The doctors used bone marrow-derived adult stem cells to promote nerve repair.
Source: News Agencies
Comment by Dr. Krishna Kumari Challa on November 11, 2023 at 9:29am

Why do massive stars make up such a high proportion of runaway stars? There are two competing theories that attempt to explain runaway stars, and both involve massive stars. One is the dynamical ejection scenario (DES), and the other is the binary supernova scenario (BSS).

OB stars often form in binary pairs. In the BSS, one star explodes as a supernova, and the explosion kicks the other star. If the situation is right, the surviving star is given enough energy in the right direction that it can escape from its bond with its partner, which is now a neutron star or a black hole. It can also escape the gravitational pull of the Milky Way. If that happens, it begins its long journey into intergalactic space.

In the DES, there's no dramatic supernova explosion. Instead, a star in a compact, densely packed region experiences gravitational interactions with other stars. Encounters between binary and single stars can produce runaways, and so can encounters between two binary pairs. The OB associations where O-type and B-type stars tend to form are the types of dense environments that can trigger runaway stars. Since most of these stars are massive, most of the runaway stars are, too.

Scientists have been wondering about the two scenarios and debating them for decades. Both scenarios can produce stars with enough velocity to escape the galaxy. In studying their sample of 175 runaway stars, the researchers found that their data favors one explanation over the other.

The higher percentages and higher velocities found for O-type compared to Be-type runaways underline that the dynamical ejection scenario is more likely than the binary supernova scenario.

The percentages of spectral types represented in runaway stars help explain their conclusion. 25% of the O-type stars in their sample are runaways versus 5% of the Be-type. Other studies have come up with different numbers, but as the researchers point out, there is agreement in the sense that the percentage of runaway O stars is significantly higher than for B or Be stars.

Previous research shows that O-type runaway stars have higher velocities than B and Be-type stars. Previous research also shows that dynamical ejection often results in faster, more massive runaways than the binary supernova scenario. 

M. Carretero-Castrillo et al, Galactic runaway O and Be stars found using Gaia DR3, Astronomy & Astrophysics (2023). DOI: 10.1051/0004-6361/202346613. On arXivDOI: 10.48550/arxiv.2311.01827

Part 2

**

Comment by Dr. Krishna Kumari Challa on November 11, 2023 at 9:26am

Astronomers find dozens of massive stars fleeing the Milky Way

The Milky Way can't hold onto all of its stars. Some of them get ejected into intergalactic space and spend their lives on an uncertain journey. A team of astronomers took a closer look at the most massive of these runaway stars to see what they could find out how they get ejected.

When astronomers observe a field of stars in the Milky Way, one of the things they measure is the velocity distribution. The overall velocity distribution of the stellar population reflects the rotation of the galaxy. And when a star isn't harmonized with the galaxy's rotation, it catches astronomers' attention.

A team of astronomers working with two catalogues of massive stars found a whole bunch of stars moving differently than the galaxy. They're runaway stars that are on their way out of the galaxy.

Nobody knows how many runaway stars are on their way out of our galaxy, but astronomers keep finding more of them. Some estimates say there are 10 million runaway stars fleeing the Milky Way, but we don't know for sure. It may depend on the mechanism that drives them away, and that's something astrophysicists don't fully understand. A new study aims to shed some light on the runaway star phenomenon by looking specifically at massive stars.

A relevant fraction of massive stars are runaway stars. These stars move with a significant peculiar velocity with respect to their environment.

Massive early-type OB stars are the most luminous stars in the Milky Way. OB stars are not only massive and young, they're extremely hot. They form in loosely organized groups with one another called OB associations. Because they're young and hot, they don't last long. They're important in astronomy because they're so massive and energetic and because many of them explode as supernovae. That's why there are specific catalogues dedicated to them.

Part 1

Comment by Dr. Krishna Kumari Challa on November 11, 2023 at 9:19am

Earth's Moon: Why One Side Always Faces Us

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service