Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 19 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 19 hours ago. 1 Reply 0 Likes
Image source: WIKIPEDIACoconut trees are iconic plants found across the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Pathogen transmission can be modeled in three stages. In Stage 1, the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply 0 Likes
Q: Science does not understand energy and the supernatural world because science only studies the material world. Is that why scientists don't believe in magic, manifestation or evil eye? Why flatly…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: Why do I have four horizontal lines on my fingers? My child has the same thing.Krishna: You should have posted pictures of your fingers. I would like to see and then guess what condition it really…Continue
Comment
More than 7,000 people were hospitalized or died from COVID-19 in the UK during the summer of 2022 because they had not received the recommended number of vaccine doses, according to a study released Tuesday that was the first to cover Britain's entire population.
The researchers said the "landmark" population-wide study showed how important it is for people to keep getting booster jabs as COVID continues to pose a major health threat. More than 90 percent of the UK's adult population were vaccinated during the earlier stages of the pandemic. However, between June to September 2022, after the pandemic's emergency phase was declared over and attention turned elsewhere, around 44 percent of Britons were under-vaccinated, the researchers said. Using individual health data from the National Health Service (NHS) as well as modeling, the researchers estimated that there would have been 7,180 fewer hospitalizations or deaths if everyone had been up to date with their shots. That means that nearly 20 percent of the 40,000 COVID hospitalizations or deaths over the summer could have been avoided if Britons were fully vaccinated.
Undervaccination and severe COVID-19 outcomes: meta-analysis of national cohort studies in England, Northern Ireland, Scotland, and Wales, The Lancet (2024). DOI: 10.1016/S0140-6736(23)02467-4 , www.thelancet.com/journals/lan … (23)02467-4/fulltext
"We have finally unveiled the intricate story of when, where, and how plants respond to airborne 'warning messages' from their threatened neighbors," says Masatsugu Toyota, a molecular biologist at Saitama University in Japan and senior author of the study.
"This ethereal communication network, hidden from our view, plays a pivotal role in safeguarding neighboring plants from imminent threats in a timely manner."
The study has been published in Nature Communications.
https://www.sciencealert.com/scientists-film-plant-talking-to-its-n...
Part 4
**
It wasn't a natural set-up; the compounds were concentrated in a plastic bottle and pumped onto the recipient plant at a constant rate, but this allowed the researchers to analyze what compounds were in the pungent mix.
As you can see in the video above, the undamaged plants received the messages of their injured neighbors loud and clear, responding with bursts of calcium signaling that rippled across their outstretched leaves.
Analyzing the airborne compounds, the researchers found that two compounds called Z-3-HAL and E-2-HAL induced calcium signals in Arabidopsis.
They also identified which cells are the first to respond to the danger cues by engineering Arabidopsis plants with fluorescent sensors exclusively in guard, mesophyll, or epidermal cells.
Guard cells are bean-shaped cells on plant surfaces that form stomata, small pores that open up to the atmosphere when plants 'breathe' in CO2. Mesophyll cells are the inner tissue of leaves, and epidermal cells are the outermost layer or skin of plant leaves.
When Arabidopsis plants were exposed to Z-3-HAL, guard cells generated calcium signals within a minute or so, after which mesophyll cells picked up the message.
What's more, pre-treating plants with a phytohormone that shuts stomata significantly reduced calcium signaling, suggesting stomata act as the 'nostrils' of the plant.
part 3
Caterpillars (Spodoptera litura) were set upon leaves cut from tomato plants and Arabidopsis thaliana, a common weed in the mustard family, and the researchers imaged the responses of a second, intact, insect-free Arabidopsis plant to those danger cues.
These plants weren't any ordinary weeds: they had been genetically altered so their cells contained a biosensor that fluoresced green when an influx of calcium ions was detected. Calcium signaling is something human cells use to communicate too.
The team used a similar technique to measure calcium signals in a study last year of fluorescent Mimosa pudica plants, which quickly move their leaves in response to touch, to avoid predators.
This time, the team visualized how plants responded to being bathed in volatile compounds, which plants release within seconds of wounding.
Part 2
Imperceptible to us, plants are surrounded by a fine mist of airborne compounds that they use to communicate and protect themselves. Kind of like smells, these compounds repel hungry herbivores and warn neighboring plants of incoming assailants.
Scientists have known about these plant defenses since the 1980s, detecting them in over 80 plant species since then. Now, a team of Japanese researchers has deployed real-time imaging techniques to reveal how plants receive and respond to these aerial alarms.
This was a big gap in our understanding of plant chatter: we knew how plants send messages, but not how they receive them.
In this study, Yuri Aratani and Takuya Uemura, molecular biologists at Saitama University in Japan, and colleagues rigged up a pump to transfer compounds emitted by injured and insect-riddled plants onto their undamaged neighbors, and a fluorescence microscope to watch what happened.
Joining the ranks of existing polydrugs
Kush is another example of polydrug mixtures of which forensic scientists are becoming increasingly aware. Another tobacco and cannabis-based drug, nyaope, otherwise known as whoonga, is found in South Africa.
This time the tobacco and cannabis are mixed with heroin and antiretroviral drugs used to treat Aids, some of which are hallucinogenic.
A further polydrug, "white pipe", a mixture of methaqualone (Mandrax), cannabis and tobacco, is smoked in southern Africa.
These drugs are inexpensive and provide an escape from unemployment, the drudgery of poverty, sexual and physical abuse, and the effect, in some cases, especially in west Africa, from having been a child soldier.
So what can be done about these drugs? The effectiveness of legislation alone is questionable, and many of those who attend the very limited rehabilitation centres return to drug use.
Perhaps what is required is an integrated forensic healthcare system where legislative control is backed up by properly resourced rehabilitation centres coupled with a public health and employment programme. What changes are made in response to this epidemic remains to be seen.
Michael Cole, Professor of Forensic Science, Anglia Ruskin University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Part 3
**
Where is the drug found?
The drug is reported in both Guinea and Liberia, which share porous land borders with Sierra Leone, making drug trafficking easy.
Kush costs around five leones (20 UK pence) per joint, which may be used by two or three people, with up to 40 joints being consumed in a day.
This represents a massive spend on drugs and illustrates the addictive nature of the mixture, in a country where the annual income per capita is around £500.
The effects of the drug vary and depend on the user and the drug content. Cannabis causes a wide variety of effects, which include euphoria, relaxation and an altered state of consciousness.
Fentanyl, an extremely potent opioid, produces euphoria and confusion and causes sleepiness among a wide range of other side-effects.
Similarly, tramadol, which is also an opioid but less potent than fentanyl (100mg tramadol has the same effect as 10mg morphine) results in users becoming sleepy and "spaced out" – disconnected from things happening around them.
The danger of the drug is twofold: the risk of self-injury to the drug taker and the highly addictive nature of the drug itself. A further problem is the need to finance the next dose, often achieved through prostitution or criminal activity
Part 2
The researchers set out to study how water molecules are affected by the distribution of ions at the exact point where air and water meet. Traditionally, this has been done with a technique called vibrational sum-frequency generation (VSFG). With this laser radiation technique, it is possible to measure molecular vibrations directly at these key interfaces.
However, although the strength of the signals can be measured, the technique does not measure whether the signals are positive or negative, which has made it difficult to interpret findings in the past. Additionally, using experimental data alone can give ambiguous results.
The team overcame these challenges by utilizing a more sophisticated form of VSFG, called heterodyne-detected (HD)-VSFG, to study different electrolyte solutions. They then developed advanced computer models to simulate the interfaces in different scenarios.
The combined results showed that both positively charged ions, called cations, and negatively charged ions, called anions, are depleted from the water/air interface. The cations and anions of simple electrolytes orient water molecules in both up- and down-orientation. This is a reversal of textbook models, which teach that ions form an electrical double layer and orient water molecules in only one direction.
This work demonstrates that the surface of simple electrolyte solutions has a different ion distribution than previously thought and that the ion-enriched subsurface determines how the interface is organized: at the very top there are a few layers of pure water, then an ion-rich layer, then finally the bulk salt solution.
Kuo-Yang Chiang et al, Surface stratification determines the interfacial water structure of simple electrolyte solutions, Nature Chemistry (2024). DOI: 10.1038/s41557-023-01416-6. www.nature.com/articles/s41557-023-01416-6
Textbook models will need to be re-drawn after a team of researchers found that water molecules at the surface of salt water are organized differently than previously thought.
Many important reactions related to climate and environmental processes take place where water molecules interface with air. For example, the evaporation of ocean water plays an important role in atmospheric chemistry and climate science. Understanding these reactions is crucial to efforts to mitigate the human effect on our planet.
The distribution of ions at the interface of air and water can affect atmospheric processes. However, a precise understanding of the microscopic reactions at these important interfaces has so far been intensely debated.
In a paper published in the journal Nature Chemistry, researchers show that ions and water molecules at the surface of most salt-water solutions, known as electrolyte solutions, are organized in a completely different way than traditionally understood. This could lead to better atmospheric chemistry models and other applications.
Part 1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!