Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: on Monday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 12 Replies 2 Likes
What might happen when you take lots of medicines...One of our uncles died of liver cirrhosis ten years back. He never touched alcohol in his life. He didn't have any viral infection to cause this.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Researchers have discovered a surprising way cancer evades the immune system. It essentially hacks the immune cells, transferring its own faulty mitochondrial DNA (mtDNA) into the T-cells meant to…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: If a seed is planted in the ground even after lakhs of years, the plant will sprout.. But how did that seed manage to hide life within itself for all these lakhs of years? Can you tell me? (The…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 9 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Comment
Gray whales make the longest migration of any mammal on Earth, traveling more than 12,000 miles every year from their foraging grounds in the Arctic, where they spend the summers, to their breeding grounds in the warm, shallow lagoons of Mexico's Baja Peninsula, where they spend the winters.
While in the Arctic, the gray whales feed on amphipod crustaceans. Amphipods in turn feed on algae, which grows on the underside of sea ice.
With less ice, you get less algae, which is worse for the gray whale prey. When there are sudden declines in the quality of prey, the population of gray whales is significantly affected.
In other words, the melting sea ice disrupts the entire food chain.
The decrease in available food can cause skinnier or malnourished whales, as well as lower birth rates.
Even highly mobile, long-lived species such as gray whales are sensitive to climate change impacts.
Part 2
**
https://www.businessinsider.in/science/news/gray-whales-have-been-m...
Gray whales have been washing up dead on the Pacific coast at an alarming rate since 2019, and scientists think they might finally know why.
The gray whale strandings from Mexico all the way to Alaska have been declared an "unusual mortality event," or a significant die-off of a species that is unexplained and requires a quick response.
Two other mass die-offs of gray whales occurred in the 1980s and 1990s, though those only lasted a couple of years; the latest is still ongoing. The latest die-off has caused the North Pacific gray whale population to plummet from an estimated 27,000 in 2016 to 14,500 in 2023, according to the National Oceanic and Atmospheric Administration. For years, researchers could only guess what was killing the whales. NOAA has previously noted that emaciation had been observed in some of the dead whales, but not in others. But scientists at Oregon State University's Marine Mammal Institute now say there is strong evidence that the whale deaths are linked directly to sea ice melting in the Arctic, according to a study published recently in the journal Science.
The decrease in sea ice was also causing the gray whales' food supply to diminish.
Part 1
Diabetic patients whose natural wound-healing capabilities are compromised often develop chronic wounds that are slow to heal. Such non-healing wounds could cause serious infections resulting in painful outcomes, such as limb amputation. To address this global health care challenge, a team of researchers engineered an innovative magnetic gel that promises to accelerate the healing of diabetic wounds, reduce the rates of recurrence, and in turn, lower the incidents of limb amputations.
Each treatment involves the application of a bandage pre-loaded with a hydrogel containing skin cells for healing and magnetic particles. To maximize therapeutic results, a wireless external magnetic device is used to activate skin cells and accelerate the wound healing process. The ideal duration of magnetic stimulation is about one to two hours.
Lab tests showed the treatment coupled with magnetic stimulation healed diabetic wounds about three times faster than current conventional approaches. Furthermore, while the research has focused on healing diabetic foot ulcers, the technology has potential for treating a wide range of complex wounds such as burns.
Yufeng Shou et al, Mechano‐activated Cell Therapy for Accelerated Diabetic Wound Healing, Advanced Materials (2023). DOI: 10.1002/adma.202304638
Our skin plays a key role in perceiving temperature and the surroundings. For instance, we perceive the chill of the outdoors when our cheeks blush with cold, and we sense the onset of spring when our skin warms up gradually.
However, getting exposed to the same stimuli repeatedly, makes us accustomed to the stimuli, making it challenging to sense new sensations. This process, known as "temperature acclimatization," can interfere with our ability to gauge temperature changes in a virtual reality (VR) environment while switching scenes.
In a new study, researchers have developed a non-contact technology for simulating a cold sensation that continually generates thermal experiences while maintaining nearly constant skin temperature. This innovative approach leverages human body's natural sensitivity to rapid temperature changes.
The technology employs a combination of cold air flow and a light source to instantly switch between a quick cold and a gentle warm stimulus, inducing a cold sensation while maintaining the skin temperature fluctuations close to zero. Evaluation results have demonstrated that this system can provide a virtual cold sensation without any actual change in temperature. Moreover, the researchers have succeeded in replicating a cold sensation of the same intensity as one would experience with continuous skin temperature changes.
This technology offers a novel perspective on simulating skin sensations without altering the body's physical state.
Jiayi Xu et al, Integration of Independent Heat Transfer Mechanisms for Non-Contact Cold Sensation Presentation With Low Residual Heat, IEEE Transactions on Haptics (2023). DOI: 10.1109/TOH.2023.3324754
When the researchers came upon the Ruki River, they were quite taken aback. The water in this river, a tributary of the mighty Congo River, is so dark that you literally can't see your hand in front of your face.
Comparisons with other major tropical rivers show that the Ruki may even be the blackest large blackwater river on Earth—it's certainly a lot darker than the famous Rio Negro in the Amazon. The reason the water is black is that it contains large amounts of dissolved organic material and hardly any sediment because of the river's low gradient. These carbon-rich substances are mostly washed into the river by the rain, which falls on dead jungle vegetation and leaches out organic compounds from the decomposing plant material. What's more, the river floods the forest in the rainy season. It can take weeks for the often waist-deep water to slowly retreat, during which time it leaches organic substances.
The Ruki is one of the most DOC-rich river systems in the world (dissolved organic carbon). DOC usually comes in the form of organic acids that increase the acidity of the river water. This stimulates the release of carbon dioxide (CO2) as the acids dissolve carbonates present in the water.
Travis W. Drake et al, Hydrology drives export and composition of carbon in a pristine tropical river, Limnology and Oceanography (2023). DOI: 10.1002/lno.12436
Previous attempts have tried to make super lenses using novel materials. However, most materials absorb too much light to make the super lens useful.
Now researchers overcame this by performing the superlens operation as a post-processing step on a computer, after the measurement itself. This produces a 'truthful' image of the object through the selective amplification of evanescent (or vanishing) light waves.
This method could be applied to determine moisture content in leaves with greater resolution, or be useful in advanced microfabrication techniques, such as non-destructive assessment of microchip integrity. And the method could even be used to reveal hidden layers in artwork, perhaps proving useful in uncovering art forgery or hidden works.
Subwavelength terahertz imaging via virtual superlensing in the radiating near field, Nature Communications (2023). DOI: 10.1038/s41467-023-41949-5
Ever since Antonie van Leeuwenhoek discovered the world of bacteria through a microscope in the late seventeenth century, humans have tried to look deeper into the world of the infinitesimally small.
There are, however, physical limits to how closely we can examine an object using traditional optical methods. This is known as the diffraction limit and is determined by the fact that light manifests as a wave. It means a focused image can never be smaller than half the wavelength of light used to observe an object.
Attempts to break this limit with "super lenses" have all hit the hurdles of extreme visual losses, making the lenses opaque. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.
The work should allow scientists to further improve super-resolution microscopy, the researchers say. It could advance imaging in fields as varied as cancer diagnostics, medical imaging, or archaeology and forensics.
Researchers have now developed a practical way to implement superlensing, without a super lens. To do this, they placed their light probe far away from the object and collected both high- and low-resolution information. By measuring further away, the probe doesn't interfere with the high-resolution data, a feature of previous methods.
Part 1
The DNA double helix is composed of two DNA molecules whose sequences are complementary to each other. The stability of the duplex can be fine-tuned in the lab by controlling the amount and location of imperfect complementary sequences.
Fluorescent markers bound to one of the matching DNA strands make the duplex visible, and fluorescence intensity increases with increasing duplex stability. Now, researchers succeeded in creating fluorescent duplexes that can generate any of 16 million colours—a work that surpasses the previous 256 colours limitation.
This very large palette can be used to "paint" with DNA and to accurately reproduce any digital image on a miniature 2D surface with 24-bit color depth.
Tadija Kekić et al, A Canvas of Spatially Arranged DNA Strands that Can Produce 24-bit Color Depth, Journal of the American Chemical Society (2023). DOI: 10.1021/jacs.3c06500
The researchers found that the secondary magnet (which they call a floater) rotated in sync with the rotor magnet—they spun at the same speed. They also found that the axis of the rotor magnet spun with a slight tilt—a situation that would destabilize the two magnets if they were not spinning. To better understand what was happening, the researchers created a simulation that allowed them to more easily manipulate the two magnets and their behavior.
They found that the magnetic field of the rotor magnet exerted some amount of torque on the floater resulting in the two magnets rotating in sync due to a gyroscopic effect. But the floater resisted, if only slightly, which accounted for the parallel configuration that developed. They also found that there was a very small amount of misalignment of the polar axis of the rotor magnet relative to its magnetic field—the resulting attractive and repulsive forces balanced each other out, allowing the floater to be held in a steady position during levitation.
Joachim Marco Hermansen et al, Magnetic levitation by rotation, Physical Review Applied (2023). DOI: 10.1103/PhysRevApplied.20.044036. On arXiv: doi.org/10.48550/arXiv.2305.00812
© 2025 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!