Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: on Monday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 12 Replies 2 Likes
What might happen when you take lots of medicines...One of our uncles died of liver cirrhosis ten years back. He never touched alcohol in his life. He didn't have any viral infection to cause this.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Researchers have discovered a surprising way cancer evades the immune system. It essentially hacks the immune cells, transferring its own faulty mitochondrial DNA (mtDNA) into the T-cells meant to…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: If a seed is planted in the ground even after lakhs of years, the plant will sprout.. But how did that seed manage to hide life within itself for all these lakhs of years? Can you tell me? (The…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jan 24. 9 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Comment
Newly published research on indoor air quality shows wildfire smoke may linger in homes long after the initial blaze has been put out or winds have shifted.
The findings, published in Science Advances, show that wildfire smoke can attach to home surfaces like carpet, drapes or counters—extending the exposure for those inside and potentially causing health problems even after an initial cleaning activity by air purifiers.
However, the research also shows that surface cleaning—like vacuuming, dusting or mopping—can reduce exposure and limit risk. The team was able to show that the amount of smoke left on surfaces was proportional to the surface area that was cleaned. That means simple cleaning and specifically addressing large but little noticed spaces that may trap harmful compounds such as cabinets and HVAC systems could be beneficial right away.
Jienan Li et al, The persistence of smoke VOCs indoors: partitioning, surface cleaning, and air cleaning in a smoke-contaminated house, Science Advances (2023). DOI: 10.1126/sciadv.adh8263. www.science.org/doi/10.1126/sciadv.adh8263
Like human aging, stem cell maturation is considered a one-way process; once an undifferentiated stem cell goes down the path to become a specific type of cell, there is no turning back. But that does not seem to be the case with melanocyte stem cells (McSC), which give rise to cells that produce hair and skin pigments.
In a recent study, researchers investigated McSC in hair follicles and found that depending on microenvironment cues, McSCs can fluctuate between undifferentiated and differentiated states. The researchers also found that as the hair follicle ages, a larger number of melanocyte stem cells get stuck in an undifferentiated state, losing their ability to mature and produce melanin. Published in Nature, these results not only challenge the traditional view on how stem cells differentiate, but also offer clues to why hair turns gray with aging.
The researchers were surprised to find that McSC did not reside in an area called the bulge as previously thought, but were instead located in a compartment known as the hair germ. When the hair started to grow, the McSC transitioned to an intermediate differentiation state from which they either transformed into fully mature melanocytes at the base of the growing hair or moved up to the hair bulge where they stayed as undifferentiated cells. Then these stem cells homed back to the hair germ as the hair entered the resting phase of its growth cycle.
Once they realized that the maturation of these cells depended on their location, the team next investigated which signals within those compartments drove these changes. In the new study, the team found that nearby epithelial cells in the hair germ released Wnt ligands that mature the McSC, but these signals were suppressed in the bulge where the cells regained their undifferentiated features.
Melanocytes give hair its color, and hair pigmentation reduces with aging. So, the researchers wondered what would happen to McSC mobility in an aged hair follicle. To accelerate the aging of hair follicles, the researchers plucked mouse hair to induce regeneration of the follicles and observed McSCs over time. In aged mice, they found more of the stem cells in the bulge area rather than going back to the hair germ.
These findings suggested that as the hair follicle ages, McSC get stuck in a region where less pigment-inducing signals are present. This mechanism might explain why hair turns gray much more rapidly than it falls off.
Although scientists knew that cells could swing back and forth between their maturity states when there were tissue injuries, the study results are exciting as they reveal that dedifferentiation can also occur under a physiological condition.
Since the researchers conducted all of the experiments in mice, questions remain as to whether the same events are also seen in humans.
Sun Q, et al. Dedifferentiation maintains melanocyte stem cells in a dynamic niche. Nature. 2023;616(7958):774-782.
Rabbani P, et al. Coordinated activation of Wnt in epithelial and melanocyte stem cel.... Cell. 2011;145(6):941-955.
Monkey lives with gene-edited pig kidney A macaque lived for more than two years with a kidney from a gene-edited miniature pig — one of the longest-lasting interspecies organ transplants. It raises hopes that human organ shortages could one day be alleviated by using organs from donor animals. The donor pigs received 69 gene edits to prevent immune reactions after transplantation and to keep the organ healthy. Of the 15 monkeys that received a transplant, five survived for more than one year and one of those lived for 758 days.
https://www.nature.com/articles/s41586-023-06594-4.epdf?sharing_tok...
Small-Volume Blood Collection Tubes to Reduce Transfusions in Intensive Care, JAMA (2023). DOI: 10.1001/jama.2023.20820. jamanetwork.com/journals/jama/ … 1001/jama.2023.20820
Part 2
A world-first clinical trial published in JAMA could provide an easy way to save tens of thousands of units of blood every year worldwide.
The trial, which involved more than 27,000 patients in 25 adult intensive care units (ICUs) across Canada, showed that taking less blood for lab tests using "small-volume" tubes reduced the need for almost one blood transfusion for every 10 patients. Most hospitals use standard tubes that automatically draw four to six milliliters (ml) of blood, but a typical laboratory test requires less than 0.5 ml of blood, meaning the rest (more than 90%) is wasted. Commercially available small-volume tubes have a weaker vacuum inside that automatically draws up to half as much blood. "While the amount of blood drawn per tube is relatively small, ICU patients typically require multiple blood samples taken multiple times every day. This can add up to significant blood loss that contributes to anemia, or low red blood cells. ICU patients are unable to produce more red blood cells to correct for this blood loss and often require treatment with a blood transfusion.
This trial showed that we can save one blood transfusion for every 10 ICU patients by simply switching to small-volume tubes for blood collection.
At a time when everyone is trying to find ways to make health care more sustainable, and preserve our supply of blood products, this study provides a simple solution that can be implemented without additional cost or negative effects. The study also has important implications for patients, as low red blood cells (anemia) can leave patients feeling tired and weak and is associated with can lead to other complications and longer hospital stays. While blood transfusions can usually correct anemia, there can be rare side effects, such as difficulty breathing, allergic reactions and infections.A small molecule previously shown to enhance strength in injured or old laboratory mice does so by restoring lost connections between nerves and muscle fibers, researchers have found.
The molecule, called PGE2, blocks the activity of an aging-associated enzyme, or gerozyme, called 15-PGDH that naturally increases in muscles as they age. The study showed that levels of the gerozyme increase in muscles after nerve damage and that it is prevalent in muscle fibers of people with neuromuscular diseases. The research is the first to show that damaged motor neurons—nerves connecting the spinal cord to muscles—can be induced to regenerate in response to a drug treatment and that lost strength and muscle mass can be at least partially regained. It suggests that, if similar results are seen in humans, the drug may one day be used to prevent muscle loss of muscle strength due to aging or disease or to hasten recovery from injury.
Mohsen A. Bakooshli et al, Regeneration of neuromuscular synapses after acute and chronic denervation by inhibiting the gerozyme 15-prostaglandin dehydrogenase, Science Translational Medicine (2023). DOI: 10.1126/scitranslmed.adg1485
To explore this avenue, the researchers recruited 22 people without sleep disorders and 27 patients with narcolepsy—that is, people who experience uncontrollable episodes of daytime sleepiness. People with narcolepsy have the particularity of having many lucid dreams, in which they are aware of being asleep; some can sometimes even shape their dream scenario as they wish.
In addition, they easily and quickly enter REM sleep (the stage where lucid dreaming occurs) during the day, making them good candidates for studying consciousness during sleep under experimental conditions.
Participants in the study were asked to take a nap. The researchers gave them a "lexical decision" test, in which a human voice pronounced a series of real and made-up words. Participants had to react by smiling or frowning to categorize them into one or the other of these categories. Throughout the experiment, they were monitored by polysomnography—a comprehensive recording of their brain and heart activity, eye movements, and muscle tone.
Upon waking up, participants had to report whether they had or had not had a lucid dream during their nap and whether they remembered interacting with someone.
Most of the participants, whether narcoleptic or not, responded correctly to verbal stimuli while remaining asleep. These events were certainly more frequent during lucid dreaming episodes, characterized by a high level of awareness.
By cross-referencing these physiological and behavioral data and the participants' subjective reports, the researchers also showed that it is possible to predict the opening of these windows of connection with the environment, i.e., the moments when sleepers were able to respond to stimuli. They were announced by an acceleration in brain activity and by physiological indicators usually associated with rich cognitive activity.
Türker B. et al. Behavioral and brain responses to verbal stimuli reveal transient periods of cognitive integration of the external world during sleep. Nature Neuroscience (2023). DOI: 10.1038/s41593-023-01449-7. www.nature.com/articles/s41593-023-01449-7
Part 3
Even if it seems familiar because we indulge in it every night, sleep is a highly complex phenomenon. Our research has taught us that wakefulness and sleep are not stable states: on the contrary, we can describe them as a mosaic of conscious and seemingly unconscious moments. It is essential to decipher the brain mechanisms underlying these intermediate states between wakefulness and sleep. "When they are dysregulated, they can be associated with disorders such as sleepwalking, sleep paralysis, hallucinations, the feeling of not sleeping all night, or on the contrary of being asleep with your eyes open.
To distinguish between wakefulness and the different stages of sleep, researchers usually use physiological indicators such as specific brain waves made visible through electroencephalography. Unfortunately, these indicators do not provide a detailed picture of what is happening in the minds of sleepers; sometimes, they even contradict their testimonies.
Part 2
Sleep is not a state in which we are completely isolated from our environment: while we sleep, we are capable of hearing and understanding words. These observations, the result of close collaboration between various research teams call into question the very definition of sleep and the clinical criteria that make it possible to distinguish between its different stages.
Sleep is generally defined as a period during which the body and mind are at rest—as if disconnected from the world. However, a new study shows that the frontier between wakefulness and sleep is much more porous than it seems.
The researchers have shown that ordinary sleepers can pick up verbal information transmitted by a human voice and respond to it by contracting their facial muscles. This astonishing ability occurs intermittently during almost all stages of sleep—like windows of connection with the outside world were temporarily opened on this occasion. These new findings suggest that it may be possible to develop standardized communication protocols with sleeping individuals to understand better how mental activity changes during sleep. On the horizon: a new tool to access the cognitive processes that underlie both normal and pathological sleep.
Part 1
Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.
If gamblers, investors and quantum experimentalists could bend the arrow of time, their advantage would be significantly higher, leading to significantly better outcomes. Researchers at the University of Cambridge have shown that by manipulating entanglement—a feature of quantum theory that causes particles to be intrinsically linked—they can simulate what could happen if one could travel backwards in time. So that gamblers, investors and quantum experimentalists could, in some cases, retroactively change their past actions and improve their outcomes in the present. Whether particles can travel backwards in time is a controversial topic among physicists, even though scientists have previously simulated models of how such spacetime loops could behave if they did exist. By connecting their new theory to quantum metrology, which uses quantum theory to make highly sensitive measurements, the Cambridge team has shown that entanglement can solve problems that otherwise seem impossible.
David R. M. Arvidsson-Shukur et al, Nonclassical Advantage in Metrology Established via Quantum Simulations of Hypothetical Closed Timelike Curves, Physical Review Letters (2023). DOI: 10.1103/PhysRevLett.131.150202
© 2025 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!