Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 20 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: How Big is the universe?Krishna: The total size of the universe is not known, and some scientists think it could be many times larger than the observable portion. For example, one hypothesis…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Why do some people commit crimes? What does science say about it?Krishna: It is easy to blame people. But did you know that the way your brain wires or rewires because of different situations it…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
Cars may be a modern phenomenon, but motion sickness is not. More than 2,000 years ago, the physician …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
"De-evolution" or "devolution" is a concept suggesting that species can revert to more primitive forms over time.Some scientists don't accept this concept at all. They say Evolution is a continuous…Continue
Comment
Specific recommendations include:
Institutionalizing resource governance and defining resource use paths especially the consideration of sustainable resource use in strategies to implement Multilateral Environmental Agreements (MEAs) and improving the ability of countries to benchmark and set targets for resource consumption and productivity. Directing finance towards sustainable resource use by reflecting the true costs of resources in the structure of the economy (i.e., subsidies, regulation, taxes, nudges, infrastructure, and planning). Additional recommendations include channeling private finance towards sustainable resource use and incorporating resource-related risk into Public and Central Bank mandates.
Mainstreaming sustainable consumption options by making sure consumers have the right information, have access to and are able to afford sustainable goods and services. Such measures must be coupled with regulation to disincentivize or ban resource-intensive options (like non-essential single-use plastic products).
Making trade an engine of sustainable resource use by creating a level playing field where the true environmental and social costs of goods are reflected in prices by introducing MEAs into trade agreements, for example.
Creating circular, resource-efficient and low impact solutions, and business models to include refuse, reduce, eco-design, reuse, repair, and recycling, as well as supportive regulation and evaluation of existing systems.
Implemented together, these policies can transform the built environment, mobility, food, and energy systems, resulting in an upsurge in renewable energies and energy efficiency, decarbonization of material production, more walkable and cyclable cities with better public transportation and remote work opportunities, as well as reduced food loss and waste. High- and upper-middle-income countries would see a dietary shift away from animal protein and more compact cities, while lower-income economies would experience a rise in resource use to enable dignified living.
part3
The triple planetary crisis of climate change, nature loss and pollution is driven from a crisis of unsustainable consumption and production. We must work with nature instead of merely exploiting it, say the experts.
Reducing the resource intensity of mobility, housing, food, and energy systems is the only way we can achieve the Sustainable Development Goals and ultimately a just and liveable planet for all. At the heart of global resource use are fundamental inequalities: low-income countries consume six times less materials and generate 10 times less climate impacts than those living in high-income countries. Upper-middle-income countries have more than doubled resource use in the past 50 years due to their own growth in infrastructure and the relocation of resource-intensive processes from high-income countries.The extraction of the Earth's natural resources tripled in the past five decades, related to the massive build-up of infrastructure in many parts of the world and the high levels of material consumption, especially in upper-middle and high-income countries.
Material extraction is expected to rise by 60% by 2060 and could derail efforts to achieve not only global climate, biodiversity, and pollution targets but also economic prosperity and human well-being, according to a report published today by the UN Environment Program (UNEP)-hosted International Resource Panel.
The 2024 Global Resource Outlook, developed by the International Resource Panel with authors from around the globe and launched during the sixth session of the UN Environment Assembly, calls for sweeping policy changes to bring humanity to live within its means and reduce this projected growth in resource use by one third while growing the economy, improving well-being, and minimizing environmental impacts.
The report finds that growth in resource use since 1970 from 30 to 106 billion tons—or from 23 to 39 kilograms of materials used on average per person per day—has dramatic environmental impacts. Overall, resource extraction and processing account for over 60% of planet-warming emissions and for 40% of health-related impacts of air pollution.New research suggests that sunlight-blocking particles from an extreme eruption would not cool surface temperatures on Earth as severely as previously estimated.
Some 74,000 years ago, the Toba volcano in Indonesia exploded with a force 1,000 times more powerful than the 1980 eruption of Mount St. Helens. The mystery is what happened after that—namely, to what degree that extreme explosion might have cooled global temperatures.
When it comes to the most powerful volcanoes, researchers have long speculated how post-eruption global cooling—sometimes called volcanic winter—could potentially pose a threat to humanity. Previous studies agreed that some planet-wide cooling would occur but diverged on how much. Estimates have ranged from 3.6°F to 14°F (2°C to 8°C).
In a new study published in the Journal of Climate, a team from NASA's Goddard Institute for Space Studies (GISS) and Columbia University in New York used advanced computer modeling to simulate super-eruptions like the Toba event. They found that post-eruption cooling would probably not exceed 2.7°F (1.5°C) for even the most powerful blasts.
The relatively modest temperature changes scientists found most compatible with the evidence could explain why no single super-eruption has produced firm evidence of global-scale catastrophe for humans or ecosystems.
To qualify as a super eruption, a volcano must release more than 240 cubic miles (1,000 cubic kilometers) of magma. These eruptions are extremely powerful—and rare. The most recent super-eruption occurred more than 22,000 years ago in New Zealand. The best-known example may be the eruption that blasted Yellowstone Crater in Wyoming about 2 million years ago.
The researchers showed to what extent the diameter of the volcanic aerosol particles influenced post-eruption temperatures. The smaller and denser the particles, the greater their ability to block sunlight.
By simulating super-eruptions over a range of particle sizes, the researchers found that super-eruptions may be incapable of altering global temperatures dramatically more than the largest eruptions of modern times. For instance, the 1991 eruption of Mount Pinatubo in the Philippines caused about a half-degree drop in global temperatures for two years.
This is another example of why geoengineering via stratospheric aerosol injection is a long, long way from being a viable option.
Zachary McGraw et al, Severe Global Cooling After Volcanic Super-Eruptions? The Answer Hinges on Unknown Aerosol Size, Journal of Climate (2023). DOI: 10.1175/JCLI-D-23-0116.1
Asian elephants loudly mourn and bury their dead calves, according to a study by Indian scientists that details animal behavior reminiscent of human funeral rites.
Researchers identified five calf burials conducted by the giant mammals in the north of India's Bengal region in 2022 and 2023, according to the study published in the Journal of Threatened Taxa this week.
They found in each case that a herd carried the deceased calf by the trunk and legs before burying it in the earth with its legs facing upward.
In one instance the herd loudly roared and trumpeted around the buried calf, the authors wrote.
The study found only calves are carried away for burial, owing to the "non-feasibility" of transporting heavier adult elephants by the rest of their herds.
The elephants buried the calves in irrigation canals on tea estates, hundreds of meters away from the nearest human settlements.
Elephants are known for their social and cooperative behavior but calf burial had previously only been "briefly studied" in African elephants—remaining unexplored among their smaller Asian cousins, the study said.
Wild elephants in both Africa and Asia are known to visit carcasses at different stages of decomposition, but this study found different behaviors from the herds it studied.
In all five cases the herd "fled the site within 40 minutes of burial" and later avoided returning to the area, instead taking different parallel routes for migration.
Parveen Kaswan et al, Unearthing calf burials among Asian Elephants Elephas maximus Linnaeus, 1758 (Mammalia: Proboscidea: Elephantidae) in northern Bengal, India, Journal of Threatened Taxa (2024). DOI: 10.11609/jott.8826.16.2.24615-24629
A perplexing problem for people with recurring urinary tract infections (UTIs) is persistent pain, even after antibiotics have successfully cleared the bacteria.
researchers have identified the likely cause—an overgrowth of nerve cells in the bladder.
The finding, appearing in the journal Science Immunology on March 1, provides a potential new approach to managing symptoms of recurring UTIs that would more effectively target the problem and reduce unnecessary antibiotic usage.
Urinary tract infections account for almost 25% of infections in women. Many are recurrent UTIs, with patients frequently complaining of chronic pelvic pain and urinary frequency, even after a round of antibiotics.
This new study, for the first time, describes an underlying cause and identifies a potential new treatment strategy.
Researchers collected bladder biopsies from recurrent UTI patients who were experiencing pain despite no culturable bacteria in their urine. Using biopsies from people without UTIs as a comparison, they found evidence that sensory nerves were highly activated in the UTI patients, explaining the persistent sense of pain and urinary frequency.
Further studies in mice revealed the underlying events, with unique conditions in the bladder that prompt activated nerves in the lining to bloom and grow with each infection.
Typically, during every bout of UTI, epithelial cells laden with bacteria are sloughed off, and significant destruction of nearby nerve tissue occurs. These events trigger a rapid repair program in the damaged bladder involving massive regrowth of destroyed nerve cells.
This immune response, including repair activities, is led by mast cells—which are immune cells that fight infection and allergens. Mast cells release chemicals called nerve growth factor, which drive overgrowth and increase sensitivity of nerves. The result is pain and urgency.
The researchers were able to address these symptoms by treating study mice with molecules that suppress production of the mast-cell generated nerve growth factor.
Byron Hayes et al, Recurrent infections drive persistent bladder dysfunction and pain via sensory nerve sprouting and mast cell activity, Science Immunology (2024). DOI: 10.1126/sciimmunol.adi5578. www.science.org/doi/10.1126/sciimmunol.adi5578
However, when applied to patients who received just one of the immunotherapy drugs, targeting the immune checkpoint receptor PD-1 only, the machine learning model could not identify those who would respond to treatment.
This suggests that the relationship between gut microbiota and treatment response is specific for particular therapeutic combinations. The researchers therefore suggest that future development of diagnostics tests or therapeutics that rely on the gut microbiome should be tailored to the immunotherapy regimen, regardless of cancer type.
This step towards personalized medicine may help extend cancer treatments to more people and can match individuals to therapies that would benefit them the most.
A gut microbial signature for combination immune checkpoint blockade across cancer types, Nature Medicine (2024). DOI: 10.1038/s41591-024-02823-z
Part 2
The microbiome can identify those who benefit from combination immunotherapy across multiple different cancers, including rare gynecological cancers, biliary tract cancers and melanoma.
Researchers have identified specific strains of bacteria that are linked with a positive response to combination immunotherapy in the largest study of its kind.
The study, published in Nature Medicine, details a signature collection of microorganisms in an individual's gut bacteria that may help identify those who would benefit from combination immunotherapy and help explain why the efficacy of this treatment is otherwise hard to predict.
In the future, understanding more about these bacteria strains can help drive the development of next-generation probiotics, known as "live biotherapeutic products," that focus on modulating the microbiome to support combination immunotherapy from the inside.
Immunotherapy is a type of treatment that harnesses the body's immune system to target the cancer. While it can be very effective, it only works in a proportion of recipients across a wide range of cancers. As with all cancer treatments, immunotherapy can have multiple side effects. Therefore, being able to predict who is most likely to respond to treatment helps ensure that patients do not endure these unnecessary side effects for no medical benefit.
This study used samples collected in a large, multi-center Australian clinical trial where combination immunotherapy was effective in 25% of people with a broad range of advanced rare cancers, including rare gynecological cancers, neuroendocrine neoplasms, and upper gastrointestinal and biliary cancers.
The clinical trial focused on a type of combination immunotherapy known as immune checkpoint inhibitors. These anti-cancer agents block the body's immune checkpoint proteins, allowing the immune cells to destroy cancer cells. In this case, the immunotherapy blocked the PD-1 and CTLA-4 checkpoints.
Researchers used stool samples from clinical trial patients and performed deep shotgun metagenomic sequencing to map all the organisms within the participants' microbiomes, down to the strain level.
They discovered multiple strains of bacteria in those who responded well to treatment, many of which had not been cultivated before. This allowed them to identify a microbiome signature that was found in patients who responded well to treatment.
In addition to this, the team used this signature to train a machine learning model that could predict who would benefit from combination immunotherapy. They conducted a meta-analysis of previous studies and found that their signature could be applied to different cancers, such as melanoma; and across countries, to predict individuals whose cancer would likely respond to combination immunotherapy.
Part 1
The researchers observed the body switching energy sources—from glucose to fat stored in the body—within the first two or three days of fasting. The volunteers lost an average of 5.7 kg of both fat mass and lean mass. After three days of eating after fasting, the weight stayed off—the loss of lean was almost completely reversed, but the fat mass stayed off.
For the first time, the researchers observed the body undergoing distinct changes in protein levels after about three days of fasting—indicating a whole-body response to complete calorie restriction. Overall, one in three of the proteins measured changed significantly during fasting across all major organs. These changes were consistent across the volunteers, but there were signatures distinctive to fasting that went beyond weight loss, such as changes in proteins that make up the supportive structure for neurons in the brain.
For the first time, scientists were able to see what's happening on a molecular level across the body when people fast. Fasting, when done safely, is an effective weight loss intervention. Popular diets that incorporate fasting—such as intermittent fasting—claim to have health benefits beyond weight loss.
The new results provide evidence for the health benefits of fasting beyond weight loss, but these were only visible after three days of total caloric restriction—later than scientists previously thought.
While fasting may be beneficial for treating some conditions, oftentimes, fasting won't be an option to patients suffering from ill health. Scientists hope that these findings can provide information about why fasting is beneficial in certain cases, which can then be used to develop treatments that patients are able to do.
Systemic proteome adaptions to 7-day complete caloric restriction in humans, Nature Metabolism (2024). DOI: 10.1038/s42255-024-01008-9
Part 2
New findings reveal that the body undergoes significant, systematic changes across multiple organs during prolonged periods of fasting. The results demonstrate evidence of health benefits beyond weight loss, but also show that any potentially health-altering changes appear to occur only after three days without food.
The study, published in Nature Metabolism, advances our understanding of what's happening across the body after prolonged periods without food.
By identifying the potential health benefits from fasting and their underlying molecular basis, researchers provide a road map for future research that could lead to therapeutic interventions—including for people that may benefit from fasting but cannot undergo prolonged fasting or fasting-mimicking diets, such as ketogenic diets.
Over millennia, humans have developed the ability to survive without food for prolonged periods of time. Fasting is practiced by millions of people throughout the world for different medical and cultural purposes, including health benefits and weight loss. Since ancient times, it has been used to treat diseases such as epilepsy and rheumatoid arthritis.
During fasting, the body changes its source and type of energy, switching from consumed calories to using its own fat stores. However, beyond this change in fuel sources, little is known about how the body responds to prolonged periods without food and any health impacts—beneficial or adverse—this may have. New techniques allowing researchers to measure thousands of proteins circulating in our blood provide the opportunity to systematically study molecular adaptions to fasting in humans in great detail.
Researchers followed 12 healthy volunteers taking part in a seven-day water-only fast. The volunteers were monitored closely on a daily basis to record changes in the levels of around 3,000 proteins in their blood before, during, and after the fast. By identifying which proteins are involved in the body's response, the researchers could then predict potential health outcomes of prolonged fasting by integrating genetic information from large-scale studies. Part 1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!