Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 20 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 20 hours ago. 10 Replies 0 Likes
Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps. "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply 0 Likes
Q: Our elders say, earlier, before the onset of the scientific era, people used to live very happily. Science changed all that. Now people are suffering like hell. Did people really lived happily…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply 0 Likes
Q: Erwin Schrodinger said:I am very astonished that the scientific picture of the real world around me is deficient. It gives a lot of factual information, puts all our experience in a magnificently…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Feb 21. 1 Reply 0 Likes
It was a dramatic and unusual sight: a Delta Air Lines passenger jet crash-landed on Monday (this week) at Toronto Pearson International Airport, skidding into flames on the runway before flipping…Continue
Comment
The planet's demand for salt comes at a cost to the environment and human health, according to a new scientific review . It revealed that human activities are making Earth's air, soil and freshwater saltier, which could pose an "existential threat" if current trends continue.
Geologic and hydrologic processes bring salts to Earth's surface over time, but human activities such as mining and land development are rapidly accelerating the natural "salt cycle." Agriculture, construction, water and road treatment, and other industrial activities can also intensify salinization, which harms biodiversity and makes drinking water unsafe in extreme cases.
When you accumulate so much salt it could affect the functioning of vital parts or ecosystems.
When people think of salt, they tend to think of sodium chloride, but this work over the years has shown that human beings have disturbed other types of salts, including ones related to limestone, gypsum and calcium sulfate.
When dislodged in higher doses, these ions can cause environmental problems.
Salt has even infiltrated the air. In some regions, lakes are drying up and sending plumes of saline dust into the atmosphere. In areas that experience snow, road salts can become aerosolized, creating sodium and chloride particulate matter.
Salinization is also associated with "cascading" effects. For example, saline dust can accelerate the melting of snow and harm communities.
Because of their structure, salt ions can bind to contaminants in soils and sediments, forming "chemical cocktails" that circulate in the environment and have detrimental effects.
The anthropogenic salt cycle, Nature Reviews Earth & Environment (2023). DOI: 10.1038/s43017-023-00485-y
Extraterrestrial mining and metal processing are key strategies for space exploration. In a new study in Scientific Reports, a team of scientists in materials science, conducted catalytic dissolution of metals from meteorite proxies of metal-rich asteroids by using a deep eutectic solvent. These solvents are important for extraterrestrial mining since they can be designed to have relatively low vapor pressures and can comprise organic waste products from extraterrestrial settlements.
The team studied three types of meteorites, two chondrites, and one iron meteorite. The chondrite samples contained silicates with metal-rich phases such as native alloys, sulfides, and oxides, of which, the metallic iron-nickel and troilite formed the most abundant metal-bearing phases in all three samples, with specific hues in the iron-rich meteorite. The scientists subjected the samples to chemical micro-etching experiments with iodine and iron (III) chloride as oxidizing agents in a deep eutectic solvent formed by mixing choline chloride and ethylene glycol.
It is possible to establish viable extraterrestrial metal extractions, and the efficient use of local materials and resource recovery from space can significantly reduce the mass, cost, and environmental constraints of space missions. These large metal-rich asteroids are parental bodies of iron meteorites and metal-rich carbonaceous chondrites. These metals can provide a local source of materials to establish a human settlement in space or other terrestrial bodies. Near Earth asteroids contain valuable platinum group metals and iron, nickel, and cobalt greater than that found on the Earth's surface.
The use of asteroids as mineral and metal resources provide a key step during space exploration with further investigations required for viable economic activity. The proposed technology is at a nascent stage and is very promising for metal recovery.
Rodolfo Marin Rivera et al, A novel method for extracting metals from asteroids using non-aqueous deep eutectic solvents, Scientific Reports (2023). DOI: 10.1038/s41598-023-44152-0
Cancer treatment can rob childbearing-age women of fertility, but new research has uncloaked how the body's own traitor protein conspires with chemo and other harsh therapies against the ovaries' primordial follicles, home of immature oocytes—the entire ovarian egg reserve.
A fertility-damaging protein called CHEK2, when triggered by chemo's destruction of DNA, is singlehandedly to blame for coordinating deletion of primordial follicles containing immature eggs—oocytes—according to a research group.
But in a stunning discovery, albeit in mouse models conducted as part of the research, the team found that blocking CHEK2 with an inhibitor stops the protein's follicle-destroying activity, preserving the vital ovarian egg reserve and fertility. CHEK2 is an attractive target for future fertility-preserving interventions that ensure reproductive health and the likelihood of a successful pregnancy for women cancer survivors. When CHEK2 is deficient, these scientists say, oocytes can survive chemotherapy.
Chihiro Emori et al, CHEK2 signaling is the key regulator of oocyte survival after chemotherapy, Science Advances (2023). DOI: 10.1126/sciadv.adg0898
The rotation of a black hole also isn't defined by the spin of physical mass, but rather by the twisting of spacetime around the black hole. When objects such as the Earth spin, they twist space around themselves very slightly. It's an effect known as frame dragging.
The spin of a black hole is defined by this frame-dragging effect. Black holes spin without the physical rotation of matter, just a twisted spacetime structure. This means there is an upper limit to this spin due to the inherent properties of space and time.
In Einstein's equations of general relativity, the spin of a black hole is measured by a quantity known as a, where a has to be between zero and one. If a black hole has no spin, then a = 0, and if it is at its maximal rotation, then a = 1.
This brings us to a new study on the rotation of the supermassive black hole in our galaxy. The team looked at radio and X-ray observations of the black hole to estimate its spin.
Due to the frame-dragging of spacetime near the black hole, the spectra of light from material near it is distorted. By observing the intensity of light at various wavelengths, the team was able to estimate the amount of spin.
What they found was that the a value for our black hole is between 0.84 and 0.96, which means it's rotating incredibly fast. At the upper range of the estimated rotation, it would be rotating at nearly the maximal rate.
This is even higher than the spin parameter of the black hole in M87, where a is estimated to be between 0.89 and 0.91.
Daly, Ruth A., et al. “New Black Hole Spin Values for Sagittarius A* Obtained with the Out....” Monthly Notices of the Royal Astronomical Society (2023): stad3228.
Part 2
**
Pick any object in the Universe, and it is probably spinning. Asteroids tumble end over end, planets and moons rotate on their axes, and even black holes spin.
And for everything that spins, there is a maximum rate at which it can rotate. The black hole in our galaxy is spinning at nearly that maximum rate.
For objects such as the Earth, the maximum rate of rotation is defined by its surface gravity. The weight we feel while standing on the Earth isn't just due to the gravitational pull of the Earth.
Gravity pulls us toward the center of our world, but the Earth's rotation also tends to fling us outward away from the Earth. This "centrifugal" force is tiny, but it does mean that your weight at the equator is just slightly less than it is at the north or south pole.
With our 24-hour day, the weight difference between the equator and pole is just 0.3%. But Saturn's 10-hour day means that the difference is 19%. So much that Saturn bows outward a bit at its equator.
Now imagine a planet spinning so fast that the difference was 100%. At that point, the gravitational pull of the planet and its centrifugal force at the equator would cancel out.
If the world were to spin any faster, it would fly apart. It would likely fly apart at an even slower spin rate, but this is clearly the maximum rate of rotation.
For black holes, things are a bit different. Black holes aren't objects with a physical surface. They aren't made of material that could fly apart. But they still have a maximum rate of rotation.
Black holes are defined by their tremendous gravity, which distorts space and time around them. The event horizon of the black hole marks the point of no return for nearby objects, but it isn't a physical surface.
Part 1
Climate quitting means leaving your job due to concerns about your employer's impact on the climate or because you want to work directly on addressing climate issues.
Climate change poses an "existential threat" to life on Earth, prominent scientists warned recently, in an assessment on this year's avalanche of heat records and weather extremes that they said are hitting more ferociously than expected.
With expectations that 2023 will be the hottest year on record, regions across the planet have been scorched by deadly heat waves.
Others have been hit by floods, or in some cases, have suffered both extremes in quick succession.
"The truth is that we are shocked by the ferocity of the extreme weather events in 2023. We are afraid of the uncharted territory that we have now entered," said an international coalition of authors in a new report published in the journal BioScience.
Their stark assessment: "Life on planet Earth is under siege". They said humanity had made "minimal progress" in curbing its planet-heating emissions, with major greenhouse gases at record levels, and subsidies for fossil fuels soaring last year.
The study on the state of the climate looked at recent data on 35 planetary "vital signs" and found 20 of these were at record extremes this year.
William Ripple et al, 2023 State of the Climate Report: Entering Uncharted Territory, BioScience (2023). DOI: 10.1093/biosci/biad080
Around 66 million years ago, an asteroid bigger than Mount Everest smashed into Earth, killing off three quarters of all life on the planet—including the dinosaurs.
But exactly how the impact of the asteroid Chicxulub caused all those animals to go extinct has remained a matter of debate till now.
The leading theory recently has been that sulfur from the asteroid's impact—or soot from global wildfires it sparked—blocked out the sky and plunged the world into a long, dark winter, killing all but the lucky few.
However research published recently based on particles found at a key fossil site reasserted an earlier hypothesis: that the impact winter was caused by dust kicked up by the asteroid.
Fine silicate dust from pulverized rock would have stayed in the atmosphere for 15 years, dropping global temperatures by up to 15 degrees Celsius, researchers said in a study in the journal Nature Geoscience.
Cem Berk Senel et al, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience (2023). DOI: 10.1038/s41561-023-01290-4
Repeated outbreaks of bat-derived coronaviruses among humans and other mammals have heightened the need for a broad range of therapeutics—monoclonal antibodies and antivirals—treatments that can come immediately "off-the-shelf" to address newly-emerging zoonotic threats.
A groundbreaking series of experiments by scientists at collaborating research centers has not only identified a "pre-emerging bat coronavirus," but investigators have additionally demonstrated that an off-the-shelf monoclonal antibody neutralized it potently. Additionally, in vitro tests of widely-used antivirals were also effective against the virus, researchers found.
The bat-derived coronavirus is more specifically known as BtCoV-422. And a neutralizing monoclocal antibody developed to treat Middle East respiratory syndrome coronavirus—MERS-CoV—has been available for years and is known as mAb JC57-11. MERS-CoV is a bat-derived zoonotic virus that infects dromedary camels, the animals that transmit the virus to people. BtCoV-422 is genetically similar to MERS-CoV.
Writing in Science Translational Medicine, investigators who underscored a deceptively simple principle: the types of countermeasures that have worked against other coronaviruses, such as MERS-CoV and SARS-CoV-2, should impact BtCoV-422. But while investigators found that most MERS-CoV–neutralizing monoclonal antibodies had very limited activity against the virus, mAb JC57-11 delivered a powerful one-two punch.
Longping V. Tse et al, A MERS-CoV antibody neutralizes a pre-emerging group 2c bat coronavirus, Science Translational Medicine (2023). DOI: 10.1126/scitranslmed.adg5567
Volcanic eruptions occurring in tropical regions (23°N/S of the equator) have been linked to abrupt disruption of global-scale climate cycles in the Indian Ocean over the last 1 million years in new research published in Geophysical Research Letters. El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are ocean-atmosphere climate interactions that were found to be disrupted for almost a decade before returning to pre-eruption baseline levels, and the effect increases with greater eruption intensity.
Benjamin H. Tiger et al, Tropical Volcanic Eruptions and Low Frequency Indo‐Pacific Variability Drive Extreme Indian Ocean Dipole Events, Geophysical Research Letters (2023). DOI: 10.1029/2023GL103991
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!