SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 10 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Why do type 2 diabetics sometimes become thin if their condition is not managed properly?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 10 hours ago. 1 Reply

Why do type 2 diabetics sometimes become thin if their condition is not managed properly?Earlier we used to get this answer to the Q : Type 2 diabetics may experience weight loss and become thin due…Continue

Real heart attacks won't be like the ones shown in Hollywood or Bollywoood

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 1 Reply

Movies and TV serials shaped how many people imagine a heart attack—someone clutching their chest and collapsing dramatically. But those portrayals are misleading and shouldn't be expected, say the…Continue

Vaccine woes

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 13 Replies

Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue

Dad, this is why I scream when ever I hurt myself!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 5 Replies

When I was a very young school girl, I still remember very well, my Dad used to tell me to bear the pain out and not to scream and cry whenever I hurt myself and was in severe pain. I never ever saw…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on April 30, 2025 at 9:00am

Heart disease deaths worldwide linked to chemical widely used in plastics

Daily exposure to certain chemicals used to make plastic household items could be linked to more than 365,000 global deaths from heart disease in 2018 alone, a new analysis of population surveys shows.

While the chemicals, called phthalates, are in widespread use globally, Africa, South Asia, and the Middle East populations bore a much larger share of the death toll than others—about half the total.

For decades, experts have connected health problems to exposure to certain phthalates found in cosmetics, detergents, solvents, plastic pipes, bug repellents, and other products. When these chemicals break down into microscopic particles and are ingested, studies have linked them to an increased risk of conditions ranging from obesity and diabetes to fertility issues and cancer.

 The current study focused on a kind of phthalate called di-2-ethylhexyl phthalate (DEHP), which is used to make food containers, medical equipment, and other plastic softer and more flexible. Exposure has been shown in other studies to prompt an overactive immune response (inflammation) in the heart's arteries, which, over time, is associated with an increased risk of heart attack or stroke.

In their new analysis, the authors estimated that DEHP exposure contributed to 368,764 deaths, or more than 10% of all global mortality from heart disease in 2018 among men and women aged 55 through 64. A report on the findings is published in the journal eBioMedicine.

"By highlighting the connection between phthalates and a leading cause of death across the world, our findings add to the vast body of evidence that these chemicals present a tremendous danger to human health," said study  authors.

According to the authors, the resulting economic burden from the deaths identified in their study was estimated to be around $510 billion and may have reached as high as $3.74 trillion.

In a past study from 2021, the research team tied phthalates to more than 50,000 premature deaths each year, mostly from heart disease.

 Phthalate exposure from plastics and cardiovascular disease: global estimates of attributable mortality and years life lost, eBioMedicine (2025). DOI: 10.1016/j.ebiom.2025.105730

Comment by Dr. Krishna Kumari Challa on April 30, 2025 at 8:49am

Most of the elements we know and love today weren't always around. Hydrogen, helium and a dash of lithium were formed in the Big Bang, but almost everything else has been manufactured by stars in their lives, or during their violent deaths. While scientists thoroughly understand where and how the lighter elements are made, the production locations of many of the heaviest neutron-rich elements—those heavier than iron—remain incomplete.

These elements, which include uranium and strontium, are produced in a set of nuclear reactions known as the rapid neutron-capture process, or r-process. This process requires an excess of free neutrons—something that can be found only in extreme environments. Astronomers thus expected that the extreme environments created by supernovae or neutron star mergers were the most promising potential r-process sites.

It wasn't until 2017 that astronomers were able to confirm an r-process site when they observed the collision of two neutron stars. These stars are the collapsed remnants of former stellar giants and are made of a soup of neutrons so dense that a single tablespoon would weigh more than 1 billion tons. The 2017 observations showed that the cataclysmic collision of two of these stars creates the neutron-rich environment needed for the formation of r-process elements.
However, astronomers realized that these rare collisions alone can't account for all the r-process-produced elements we see today. Some suspected that magnetars, which are highly magnetized neutron stars, could also be a source.

Researchers  calculated in 2024 that giant flares could eject material from a magnetar's crust into space, where r-process elements could form.

It's pretty incredible to think that some of the heavy elements all around us, like the precious metals in our phones and computers, are produced in these crazy extreme environments

The group's calculations show that these giant flares create unstable, heavy radioactive nuclei, which decay into stable elements such as gold. As the radioactive elements decay, they emit a glow of light, in addition to minting new elements. The group also calculated in 2024 that the glow from the radioactive decays would be visible as a burst of gamma rays, a form of highly energized light. When they discussed their findings with observational gamma-ray astronomers, the group learned that, in fact, one such signal had been seen decades earlier that had never been explained. Since there's little overlap between the study of magnetar activity and heavy-element synthesis science, no one had previously proposed element production as a cause of the signal.

In the new paper, the astronomers used the observations of the 2004 event to estimate that the flare produced 2 million billion billion kilograms of heavy elements (roughly equivalent to Mars' mass). From this, they estimate that one to 10% of all r-process elements in our galaxy today were created in these giant flares. The remainder could be from neutron star mergers, but with only one magnetar giant flare and one merger ever documented, it's hard to know exact percentages—or if that's even the whole story.

Anirudh Patel et al, Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from the SGR 1806–20 Magnetar Giant Flare, The Astrophysical Journal Letters (2025). DOI: 10.3847/2041-8213/adc9b0

Part 2

Comment by Dr. Krishna Kumari Challa on April 30, 2025 at 8:45am

Flares from magnetized stars can forge planets' worth of gold

Astronomers have discovered a previously unknown birthplace of some of the universe's rarest elements: a giant flare unleashed by a supermagnetized star. The astronomers calculated that such flares could be responsible for forging up to 10% of our galaxy's gold, platinum and other heavy elements.

The discovery also resolves a decades-long mystery concerning a bright flash of light and particles spotted by a space telescope in December 2004. The light came from a magnetar—a type of star wrapped in magnetic fields trillions of times as strong as Earth's—that had unleashed a giant flare.

The powerful blast of radiation only lasted a few seconds, but it released more energy than the sun does in 1 million years. While the flare's origin was quickly identified, a second, smaller signal from the star, peaking 10 minutes later, confounded scientists at the time. For 20 years, that signal went unexplained.

Now, a new insight by astronomers at the Flatiron Institute's Center for Computational Astrophysics (CCA) in New York City has revealed that the unexplained smaller signal marked the rare birth of heavy elements such as gold and platinum. In addition to confirming another source of these elements, the astronomers estimated that the 2004 flare alone produced the equivalent of a third of Earth's mass in heavy metals. They report their discovery in a paper published on April 29 in The Astrophysical Journal Letters.

This is really just the second time we've ever directly seen proof of where these elements form, the first being neutron star mergers, say the researchers. 

Part1

Comment by Dr. Krishna Kumari Challa on April 30, 2025 at 8:36am

In the human clinical study, 14 women with severe, treatment-resistant fibromyalgia received FMT from healthy donors. Post-treatment, 12 participants reported a clinically significant reduction in pain.

Improvements, while not complete reversals, were observed in overall symptom burden, sleep quality, anxiety, and depression scores. Quantitative sensory testing showed reductions in cold pain hypersensitivity. Stool analysis confirmed successful bacterial engraftment from healthy donors.

Based on the results, alterations in gut microbiota may play a causal role in the development of pain and other symptoms associated with fibromyalgia. Because the human trial was open-label, lacked a control arm, and enrolled only women, the findings are preliminary and need confirmation in randomized controlled trials.
Modulating the gut microbiota through fecal transplantation presents a potential therapeutic strategy for individuals suffering from this chronic pain syndrome. Establishing the functional significance of gut microbiota in fibromyalgia would open new opportunities for evaluating microbial-based interventions.

Weihua Cai et al, The gut microbiota promotes pain in fibromyalgia, Neuron (2025). DOI: 10.1016/j.neuron.2025.03.032

Part 2

Comment by Dr. Krishna Kumari Challa on April 30, 2025 at 8:35am

Mice develop fibromyalgia-like pain after receiving gut microbiota from human patients

Research has discovered that transplanting gut microbiota from women with fibromyalgia into mice induces pain, immune activation, metabolomic changes, and reduced skin innervation.

The exact cause of fibromyalgia is unknown. Fibromyalgia affects 2% to 4% of the population, primarily women, and is characterized by chronic widespread pain, fatigue, sleep disruptions, and cognitive difficulties. Most patients suffer from significant symptoms that negatively impact quality of life.

Dysregulated activity of the central nervous system, altered neurotransmitters, neuroinflammation, and reduced intraepidermal nerve fiber density have been observed in fibromyalgia patients. Functional gastrointestinal disorders and depression are also common.

Previous studies have revealed that gut microbiota composition differs between women with fibromyalgia and healthy controls, yet the connection between this altered microbiota and any functional role it might play remains a mystery.

In the study, "The gut microbiota promotes pain in fibromyalgia," published in Neuron, researchers conducted a fecal microbiota transplantation study to determine whether altered gut microbiota from fibromyalgia patients could cause pain and related symptoms.

Researchers performed fecal microbiota transplantation (FMT) into germ-free female mice using samples collected from women with fibromyalgia and age-matched healthy controls. An open-label clinical trial enrolled 14 women with severe fibromyalgia who received five oral FMT doses from healthy female donors.

To assess pain and systemic changes in mice, the study employed behavioral assays, single-cell RNA sequencing, metabolomic profiling, dorsal root ganglia calcium imaging, and spinal microglia analysis. Clinical participants received oral FMT capsules biweekly for five doses following antibiotic and bowel cleansing preparation.

Mice that received microbiota from fibromyalgia patients developed mechanical, heat, and cold hypersensitivity, spontaneous pain, and muscle pain within four weeks. Persistent pain and depression-like behaviors were observed in mice four months post-transplantation.

Changes coincided with altered gut microbiota composition, immune activation marked by classical monocytes and spinal microglia, shifts in amino acid and bile acid metabolism, and reduced intraepidermal nerve fiber density. Replacing fibromyalgia-associated microbiota with that from healthy donors reversed pain hypersensitivity. Oral bile acid supplementation also reduced pain responses in mice.

Part 1

Comment by Dr. Krishna Kumari Challa on April 29, 2025 at 9:57am

Comment by Dr. Krishna Kumari Challa on April 29, 2025 at 9:30am

Study explores the motivations behind helping others

Why are some people more helpful than others? In a new JNeurosci paper, researchers used rats to explore why some individuals may be more receptive to the distress of others and how this information leads to helpful behaviour.

During a task the researchers previously developed, they observed the behaviors and brain activity of helpful rats compared to less helpful rats. In this task that probes helping behavior, rats are given the option to release a distressed peer trapped in a restrainer.

Rats that were more likely to come to the aid of others had increased activity in brain regions associated with empathy and motivation compared to less helpful rats.

The researchers also observed that helper rats had increased oxytocin receptor expression in a brain region that drives motivation compared to the less helpful rats. According to the authors, this could mean that caring for others, more than relating to others' distresses, contributes to helpfulness.

When oxytocin signaling was inhibited, rats were less friendly with others, suggesting oxytocin may support helping by making rats feel attachment to others.

 Neural and Behavioral Correlates of Individual Variability in Rat Helping Behavior: A Role for Social Affiliation and Oxytocin Receptors, JNeurosci (2025). DOI: 10.1523/JNEUROSCI.0845-24.2025

Comment by Dr. Krishna Kumari Challa on April 29, 2025 at 8:32am

Industrial waste is turning to rock in just decades, research reveals

An aluminum tab from a drinks can found encased in a new form of rock on the Cumbrian coastline has helped provide scientists with a shocking new insight into the impact of human activity on Earth's natural processes and materials.

Researchers have found that slag, an industrial waste product produced by the steel industry, is turning into solid rock in as little as 35 years.

The finding challenges centuries of understanding of the planet's geological processes, where research has shown that rock forms naturally over millions of years.

The researchers have documented for the first time a new "rapid anthropoclastic rock cycle," which mimics natural rock cycles but involves human material over accelerated timescales. They think the cycle is likely to be underway at similar industrial sites around the globe.

The team warn that the rapid and unplanned-for development of rock around industrial waste sites could have negative impacts on ecosystems and biodiversity, as well as coastal management and land planning.

In a paper published in the journal Geology, the researchers explain how detailed analysis of a 2-kilometer stretch of slag deposit at Derwent Howe in West Cumbria led to their discovery of a new Earth system cycle.

Derwent Howe was home to iron and steel-making foundries during the 19th and 20th centuries, and its coast accumulated 27 million cubic meters of furnace slag over the course of its industrial history.

The slag deposits have formed cliffs of waste material that are being eroded by coastal waves and tides. The team noticed intriguing irregular formations in the cliffs, and began to make detailed observations at 13 sites across the foreshore.

Lab tests using electron microscopy, X-ray diffraction, and Raman spectroscopy helped them to determine that Derwent Howe's slag materials contain deposits of calcium, iron, and magnesium, and manganese. These elements are highly chemically reactive, which is key to causing the accelerated process of rock formation.

When the slag is eroded by the sea, it exposes the material to seawater and air, which interacts with the slag's reactive elements to create natural cements including calcite, goethite, and brucite. These cements are the same materials that bind together natural sedimentary rocks, but the chemical reactions cause the process to happen much faster than we have assumed for similar materials in a natural rock cycle.

What's remarkable here is that scientists have found these human-made materials being incorporated into natural systems and becoming lithified—essentially turning into rock—over the course of decades instead. It challenges our understanding of how a rock is formed, and suggests that the waste material we've produced in creating the modern world is going to have an irreversible impact on our future.

Amanda Owen et al, Evidence for a rapid anthropoclastic rock cycle, Geology (2025). DOI: 10.1130/G52895.1

Comment by Dr. Krishna Kumari Challa on April 27, 2025 at 12:39pm

Aging also transformed the APCs into a new type of stem cell called committed preadipocytes, age-specific (CP-As). Arising in middle age, CP-A cells actively churn out new fat cells, explaining why older mice gain more weight.

A signaling pathway called leukemia inhibitory factor receptor (LIFR) proved critical for promoting these CP-A cells to multiply and evolve into fat cells.

The scientists discovered that the body's fat-making process is driven by LIFR. While young mice don't require this signal to make fat, older mice do.

Guan Wang et al, Distinct adipose progenitor cells emerging with age drive active adipogenesis, Science (2025). DOI: 10.1126/science.adj0430

Part 2

Comment by Dr. Krishna Kumari Challa on April 27, 2025 at 12:38pm

Why our waistlines expand in middle age

Peoples' waistlines often expand in middle age, but the problem isn't strictly cosmetic. Belly fat accelerates aging and slows down metabolism, increasing their risk for developing diabetes, heart problems and other chronic diseases. Exactly how age transforms a six pack into a softer stomach, however, is murky.

Now preclinical research has uncovered the cellular culprit behind age-related abdominal fat, providing new insights into why our midsections widen with middle age.

The researchers discovered that aging triggers the arrival of a new type of adult stem cell and enhances the body's massive production of new fat cells, especially around the belly.

The scientists conducted a series of mouse experiments later validated on human cells.

They focused on white adipose tissue (WAT), the fatty tissue responsible for age-related weight gain.

While it's well-known that fat cells grow larger with age, the scientists suspected that WAT also expanded by producing new fat cells, meaning it may have an unlimited potential to grow.

To test their hypothesis, the researchers focused on adipocyte progenitor cells (APCs), a group of stem cells in WAT that evolve into fat cells.

They first transplanted APCs from young and older mice into a second group of young mice. The APCs from the older animals rapidly generated a colossal amount of fat cells.

When the team transplanted APCs from young mice into the older mice, however, the stem cells did not manufacture many new fat cells. The results confirmed that older APCs are equipped to independently make new fat cells, regardless of their host's age.

Using single-cell RNA sequencing, the scientists next compared APC gene activity in young and older mice. While barely active in young mice, APCs woke up with a vengeance in middle-aged mice and began pumping out new fat cells.

While most adult stem cells' capacity to grow wanes with age, the opposite holds true with APCs—aging unlocks these cells' power to evolve and spread. This is the first evidence that our bellies expand with age due to the APCs' high output of new fat cells.

Part 1

 

Members (22)

 
 
 

Badge

Loading…

Birthdays

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service