Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
Sand underpins everything from skyscrapers to smartphones. Sharp sand (as opposed to rounded desert sand) is the key ingredient in concrete, while high-purity silica sand is essential for making the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 5 Replies 0 Likes
Science communication series - part 15Scientists take lots of risks while coming out in public regarding their work. And sometimes they will have…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 151 Replies 1 Like
I came across this quote when I was in school. Since then I wanted to be like an eagle -…Continue
Tags: success, will, determination, scientists, obstacles
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Q: Should we question science or just blindly believe what scientist say with research?Krishna:…Continue
Comment
More than half a billion people are living with diabetes worldwide, affecting men, women, and children of all ages in every country, and that number is projected to more than double to 1.3 billion people in the next 30 years, with every country seeing an increase, as published recently in The Lancet.
The latest and most comprehensive calculations show the current global prevalence rate is 6.1%, making diabetes one of the top 10 leading causes of death and disability. At the super-region level, the highest rate is 9.3% in North Africa and the Middle East, and that number is projected to jump to 16.8% by 2050. The rate in Latin America and the Caribbean is projected to increase to 11.3%.
Diabetes was especially evident in people 65 and older in every country and recorded a prevalence rate of more than 20% for that demographic worldwide. The highest rate was 24.4% for those between ages 75 and 79. Examining the data by super-region, North Africa and the Middle East had the highest rate at 39.4% in this age group, while Central Europe, Eastern Europe, and Central Asia had the lowest rate at 19.8%.
Almost all global cases (96%) are type 2 diabetes (T2D); all 16 risk factors studied were associated with T2D. High body mass index (BMI) was the primary risk for T2D—accounting for 52.2% of T2D disability and mortality—followed by dietary risks, environmental/occupational risks, tobacco use, low physical activity, and alcohol use.
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021, The Lancet (2023). DOI: 10.1016/S0140-6736(23)01301-6. www.thelancet.com/journals/lan … (23)01301-6/fulltext
**
The Y chromosome could be the reason that colorectal and bladder cancers are more aggressive ... and others who carry the chromosome. Researchers have found that the loss of the entire Y chromosome in some cells — which occurs naturally with age — raises the risk of aggressive bladder cancer and could allow bladder tumours to evade detection by the immune system. Separately, scientists identified a Y-chromosome gene in mice that bumps up the risk of some colorectal cancers spreading to other parts of the body by weakening connections between tumour cells. When the gene was deleted, tumour cells became less invasive, and were more likely to be recognized by immune cells. Together, the studies suggest that genetic factors — not just lifestyle — are responsible for the male bias that many cancers have.'
Air pollution is known to contribute to disease, which is why regulators such as the Environmental Protection Agency (EPA) set limits on emissions. But mounting evidence suggests that even pollution levels long thought to be safe can increase the risk of health problems, including in the brain.
Now new research has shown that even levels of certain pollutants considered safe by the EPA are linked to changes in brain function over time. The study, just published in the journal Environment International, used brain scan data from more than 9,000 participants in the Adolescent Brain Cognitive Development (ABCD) study, the largest-ever nationwide study of youth brain health. Children exposed to more pollutants showed changes in connectivity between various brain regions. In some areas, they had more connections than normal; in other areas, they had fewer.
A deviation in any direction from a normal trajectory of brain development—whether brain networks are too connected or not connected enough—could be harmful down the line.
Communication between regions of the brain help us navigate virtually every moment of our day, from the way we take in information about our surroundings to how we think and feel. Many of those critical connections develop between the ages of 9 and 12 and can influence whether children experience normal or atypical cognitive and emotional development.
Air quality across the world, even though 'safe' by EPA standards, is contributing to changes in brain networks during this critical time, which may reflect an early biomarker for increased risk for cognitive and emotional problems later in life.
Devyn L. Cotter et al, Effects of ambient fine particulates, nitrogen dioxide, and ozone on maturation of functional brain networks across early adolescence, Environment International (2023). DOI: 10.1016/j.envint.2023.108001
Evidence is mounting that astronauts are more susceptible to infections while in space. For example, astronauts on board the International Space Station (ISS) commonly suffer from skin rashes, as well as respiratory and non-respiratory diseases. Astronauts are also known to shed more live virus particles; for example, the Epstein-Barr virus, varicella-zoster responsible for shingles, herpes-simplex-1 responsible for sores, and cytomegalovirus. These observations suggest that our immune system might be weakened by space travel. But what could cause such an immune deficit?
New research work shows that the expression of many genes related to immune functions rapidly decreases when astronauts reach space, while the opposite happens when they return to Earth after six months aboard the ISS.
The researchers studied gene expression in leukocytes (white blood cells) in a cohort of 14 astronauts, including three women and 11 men, who had resided on board the ISS for between 4.5 and 6.5 months between 2015 and 2019. Leukocytes were isolated from 4 milliliters blood drawn from each astronaut at 10 time points: once pre-flight, four times in flight, and five times back on Earth.
In total, 15,410 genes were found to be differentially expressed in leukocytes. Among these genes, the researchers identified two clusters, with 247 and 29 genes respectively, which changed their expression in tandem along the studied timeline.
Genes in the first cluster were dialed down when reaching space and back up when returning to Earth, while genes in the second followed the opposite pattern. Both clusters mostly consisted of genes that code for proteins, but with a difference: Their predominant function was related to immunity for the genes in the first cluster, and to cellular structures and functions for the second.
These results suggest that when someone travels to space, these changes in gene expression cause a rapid decrease in the strength of their immune system.
A weaker immunity increases the risk of infectious diseases, limiting astronauts' ability to perform their demanding missions in space. If an infection or an immune-related condition was to evolve to a severe state requiring medical care, astronauts while in space would have limited access to care, medication, or evacuation.
But there is a silver lining to this cloud: The data showed that most genes in either cluster returned to their pre-flight level of expression within one year after return on Earth, and typically much sooner—on average, after a few weeks. These results suggest that returning astronauts run an elevated risk of infection for at least one month after landing back on Earth.
The authors hypothesized that the change in gene expression of leukocytes under microgravity is triggered by "fluid shift," where blood plasma is redistributed from the lower to the upper part of the body, including the lymphatic system. This causes a reduction in plasma volume by between 10% and 15% within the first few days in space. Fluid shift is known to be accompanied by large-scale physiological adaptations, apparently including altered gene expression.
The transcriptome response of astronaut leukocytes to long missions aboard the International Space Station reveals immune modulation, Frontiers in Immunology (2023). DOI: 10.3389/fimmu.2023.1171103. www.frontiersin.org/articles/1 … mu.2023.1171103/full
The factual Face of Science
During my science communication journey, I found that the majority of people approach science in these four different ways:
Science is a subject students study in classrooms, so after the class they can leave it there and go home.
Science is something done by scientists in the lab, a thinking process that is creating a gap between the scientific world and the layman's world.
Science is a wonderful tool to authenticate their irrational beliefs, during which they can create their own new theories. Scientists call it 'junk science'.
Science is something that aids in developing the gadgets they use: cell phones, laptops, and television sets.
Now, how about expanding science from classrooms to the universal level? And present the full splendour of science to the world from several angles?
How about broadening the reach of scientific research from labs to laymen, erasing all the distances so that they can use it efficiently to its full extent?
How about making people throw junk science into trash cans by showing that science is a wonderful mechanism to accomplish several heroic things, and creating junk science is not one of them?
And how about showing people that science can develop a lot more than smart phones and laptops?
This is exactly what we do here.
Under certain conditions—usually exceedingly cold ones—some materials shift their structure to unlock new, superconducting behavior. This structural shift is known as a "nematic transition," and physicists suspect that it offers a new way to drive materials into a superconducting state where electrons can flow entirely friction-free.
But what exactly drives this transition in the first place? The answer could help scientists improve existing superconductors and discover new ones.
Now, physicists have identified the key to how one class of superconductors undergoes a nematic transition, and it's in surprising contrast to what many scientists had assumed.
The physicists made their discovery studying iron selenide (FeSe), a two-dimensional material that is the highest-temperature iron-based superconductor. The material is known to switch to a superconducting state at temperatures as high as 70 kelvins (close to -300 degrees Fahrenheit). Though still ultracold, this transition temperature is higher than that of most superconducting materials. The higher the temperature at which a material can exhibit superconductivity, the more promising it can be for use in the real world, such as for realizing powerful electromagnets for more precise and lightweight MRI machines or high-speed, magnetically levitating trains.
For those and other possibilities, scientists will first need to understand what drives a nematic switch in high-temperature superconductors like iron selenide. In other iron-based superconducting materials, scientists have observed that this switch occurs when individual atoms suddenly shift their magnetic spin toward one coordinated, preferred magnetic direction.
But the Physicists now found that iron selenide shifts through an entirely new mechanism. Rather than undergoing a coordinated shift in spins, atoms in iron selenide undergo a collective shift in their orbital energy. It's a fine distinction, but one that opens a new door to discovering unconventional superconductors.
Occhialini, C.A., et al, Spontaneous orbital polarization in the nematic phase of FeSe, Nature Materials (2023). DOI: 10.1038/s41563-023-01585-2. www.nature.com/articles/s41563-023-01585-2
A team of researchers, after decades of research, has singled out one hormone which acts on the brain to cause vomiting as the likely cause of morning sickness – and added a stack of new evidence to back up their claims.
Researchers have had their sights set on a particular hormone called GDF15 ever since it was first detected at high levels in the blood serum of pregnant women in 2000. Since then, twin studies and genomic sequencing studies of people with severe nausea and vomiting in pregnancy have pointed to a genetic component of their illness involving two genes, including the one that encodes GDF15. The lines of evidence were aligning.
Nausea and vomiting are very common in the first trimester of pregnancy, but in around 2 percent of cases or 1 in 50 pregnancies, a most severe form develops known as hyperemesis gravidarum (HG).
Researchers uncovered a few new rare and common genetic variants in the GDF15 gene which they linked to the risk of HG. But the interplay between these genetic quirks, and the GDF15 hormone remained unclear.
latest batch of evidence supports the idea that GDF15 triggers hyperemesis.
Like many other proteins, GDF15 levels surge during pregnancy, and it seems some women are more sensitive to the hormone than others.
https://www.biorxiv.org/content/10.1101/2023.06.02.542661v1
**
A major new assessment report from an eight-nation body, the International Center for Integrated Mountain Development (ICIMOD), to which WUR contributed, reveals the changes to the glaciers, snow and permafrost of the Hindu Kush Himalayan region driven by global warming are "unprecedented and largely irreversible."
----
Heatwaves across Asia and beyond have already broken records this year, while the arrival of the El Nino climate phenomenon will mean even more extreme temperatures.
Critical insights into why airborne viruses lose their infectivity have been uncovered by scientists.
The findings, published in the Journal of the Royal Society Interface today, reveal how cleaner air kills the virus significantly quicker and why opening a window may be more important than originally thought. The research could shape future mitigation strategies for new viruses.
In the first study to measure differences in airborne stability of different variants of SARS-CoV-2 in inhalable particles, researchers show that the virus has become less capable of surviving in the air as it has evolved from the original strain through to the delta variant.
There are numerous factors that affect the transmission of airborne viruses, and these are often confounded with physical and environmental parameters that can affect viral longevity in the aerosol phase such as temperature, RH, air movement and UV light.
Through manipulating the gaseous content of the air, the researchers confirmed that the aerostability of the virus is controlled by the alkaline pH of the aerosol droplets containing the virus. Importantly, they describe how each of the SARS-CoV-2 variants has different stabilities while airborne, and that this stability is correlated with their sensitivities to alkaline pH conditions.
The high pH of exhaled SARS-CoV-2 virus droplets is likely a major driver of the loss of infectiousness, so the less acid in the air, the more alkaline the droplet, the faster the virus dies. Opening a window may be more important than originally thought as fresh air with lower carbon dioxide, reduces acid content in the atmosphere and means the virus dies significantly quicker.
Differences in Airborne Stability of SARS-CoV-2 Variants of Concern is Impacted by Alkalinity of Surrogates of Respiratory Aerosol, Journal of the Royal Society Interface (2023). DOI: 10.1098/rsif.2023.0062. royalsocietypublishing.org/doi … .1098/rsif.2023.0062
Next, the researchers rubbed flower pollen on a bumblebee so that it could exhibit a natural electric charge. Once close to these bees, worms stood on their tails, then jumped aboard. Some worms even piled on top of each other and jumped in a single column, transferring 80 worms at once across the gap.
"Worms stand on their tail to reduce the surface energy between their body and the substrate, thus making it easier for themselves to attach to other passing objects. In a column, one worm lifts multiple worms, and this worm takes off to transfer across the electric field while carrying all the column worms.
C. elegans is known to attach to bugs and snails for a ride, but because these animals don't carry electric fields well, they must make direct contact to do so. C. elegans is also known to jump on winged insects, but it was not clear how the worms were traversing such a significant distance for their microscopic size. This research makes the connection that winged insects naturally accumulate charge as they fly, producing an electric field that C. elegans can travel along.
---
It's unclear exactly how C. elegans performs this behavior. The worms' genetics might play a role. Researchers observed jumping in other worm species closely related to C. elegans, and they noted that mutants who are unable to sense electric fields jump less than their normal counterparts. However, more work is needed to determine exactly what genes are involved in making these jumps and whether other microorganisms can use electricity to jump as well.
Takuma Sugi, Caenorhabditis elegans transfers across a gap under an electric field as dispersal behavior, Current Biology (2023). DOI: 10.1016/j.cub.2023.05.042. www.cell.com/current-biology/f … 0960-9822(23)00674-7
Part 2
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!