Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 13 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 14 Replies 0 Likes
Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 15 Replies 0 Likes
Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps. "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 1 Reply 0 Likes
A few days back, when I was looking out from my balcony, I found a bird caught in the plastic wire net used to cover a balcony opposite to my apartment building. I immediately alerted the watchman…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 15 hours ago. 2 Replies 0 Likes
This scientific Nature never ceases to amaze us. When we understand why something happens through science, the wonder gets enhanced. I have already done four parts of scientific explanations of…Continue
Comment
The researchers used sensory deprivation and a multi-axis rotation device to test their vibrotactors in simulated spaceflight, so the senses participants would normally rely on were useless. Could the vibrotactors correct the misleading cues the participants would receive from their vestibular systems, and could participants be trained to trust them?
In total, 30 participants were recruited, of whom 10 received training to balance in the rotation device, 10 received the vibrotactors, and the remaining 10 received both. All participants were shown a video of the rotation device and told how it worked: moving like an inverted pendulum until it reached a crash boundary, unless it was stabilized by a person sitting in the device controlling it with a joystick.
Additional training, for the participants who received it, included tasks that taught participants to disengage from their vestibular sense and rely on the vibrotactors instead of their natural gravitational cues. These tasks involved searching for hidden non-upright balance points, which meant participants had to ignore their desire to align to upright and focus on the vibrotactors.
All participants were given a blindfold, earplugs, and white noise to listen to. Those with vibrotactors had four strapped to each arm, which would buzz when they moved away from the balance point. Each participant took part in 40 trials, aiming to keep the rotation device as close to the balance point as possible.
For half the trials, the rotation device operated on a vertical roll plane. This was considered an Earth analog because participants could use their natural gravitational cues for orientation. During the second half, which acted as a spaceflight analog, the rotation device operated on a horizontal roll plane where those gravitational cues could no longer help.
After each block of trials, participants were asked to rate how disoriented they felt and how much they trusted the vibrotactors. The scientists measured their success by looking at how often they crashed and how well they controlled their balance.
All the groups were initially disoriented in the spaceflight analog. The scientists expected this, because participants could not rely on the natural gravitational cues that they usually use. Nearly all participants reported that they trusted the vibrotactors, but they also reported confusion from conflicts between their internal cues and the vibrotactors.
The participants wearing vibrotactors still performed better than those who only received training. The training-only group crashed more frequently, moved around the balance point more, and accidentally destabilized themselves more often. Receiving the training did help, though. As the trials continued, the group who received both training and vibrotactors performed best.
However, even with training, the participants didn't perform as well as they did in the Earth analog. They may have needed more time to integrate cues from the vibrotactors, or the buzzing from the vibrotactors may not have given a strong enough danger signal.
"A pilot's cognitive trust in this external device will most likely not be enough" . "Instead, the trust has to be at a deeper—almost sub-cognitive—level. To achieve this, specialized training will be required."
Part 2
Taking space flight is dangerous. In leaving the Earth's surface, we lose many of the cues we need to orient ourselves, and that spatial disorientation can be deadly. Astronauts normally need intensive training to protect against it. But scientists have now found that wearable devices which vibrate to give orientation cues may boost the efficacy of this training significantly, making spaceflight slightly safer.
Long-duration spaceflight will cause many physiological and psychological stressors, which will make astronauts very susceptible to spatial disorientation. When disoriented, an astronaut will no longer be able to rely on their own internal sensors, which they have depended on for their whole lives.Neurons in the brain stop working very quickly if you deprive them of oxygen or glucose. If you add oxygen again, they’ll simply resume their work and do so just as quickly.
To better understand what happens inside the brain during syncope, the researchers used electrodes to record the activity of thousands of neurons from various brain regions in mice as the animals fainted. Activity decreased in all areas of the brain, except one specific region of the hypothalamus known as the periventricular zone (PVZ).
The authors then blocked the activity of the periventricular zone, and the mice experienced longer fainting episodes. Stimulating the region caused the animals to wake up and start moving again. The team suggests that a coordinated neural network that includes NPY2R VSNs and the PVZ regulates fainting and recovery.
Lovelace, J. W. et al. Nature https://doi.org/10.1038/s41586-023-06680-7 (2023).
https://www.nature.com/articles/s41586-023-06680-7.epdf?sharing_tok...
Part 3
**
.
Mysteries of fainting revealed Experiments in mice have identified a specific group of sensory neurons that is responsible for syncope, the brief loss of consciousness during fainting. The cells — called NPY2R vagal sensory neurons — are found in the vagus nerve, which connects the brain to the heart and other organs. Scientists activated these cells in mice that were roaming about, which then fainted within a few seconds. Their pupils dilated, their eyes rolled back and their heart rate, blood pressure and breathing rate all dipped. The team also found that a region of the brain’s hypothalamus is responsible for recovery from fainting.A team of marine biologists has found that large wildfires can deposit large amounts of ash on seawater, fueling the growth of phytoplankton. In their study, reported in the journal Proceedings of the Royal Society B: Biological Sciences, the group tested the impact of ash from a major wildfire on seawater samples in their lab.
Prior research has shown that large forest fires and wildfires produce a large amount of ash that remains in the air for a period of time before falling. Prior research has also found that when ash falls onto land, the result is usually positive—the ash serves as a form of fertilizer. Unfortunately, the same cannot be said for rivers and lakes—the sudden infusion of large amounts of toxic metals can kill fish and other aquatic creatures such as mollusks. For larger bodies of water, it can lead to algal blooms that remove oxygen from the water, resulting in dead zones. For this new study, the research team tracked wildfire plumes over the ocean. They collected samples of ash generated by the Thomas Fire in 2017 and brought them back to their lab for testing. The team mixed samples with fresh seawater in a jar. After a few days, they found that the ash/water solution contained high levels of dissolved nutrients, such as nitrogen and silicic acid. They found it also contained high levels of metals. The researchers then added more seawater to their ash/water solution that also contained microorganisms native to the ocean. They found that after several days, the number of microorganisms was twice as high as it was in a control sample of seawater. They also noted that they did not find any evidence that the ash had a toxic impact on the sea microorganisms. They suggest their work implies that wildfire plumes that settle on the ocean surface can lead to growth of phytoplankton communities.
T. M. Ladd et al, Food for all? Wildfire ash fuels growth of diverse eukaryotic plankton, Proceedings of the Royal Society B: Biological Sciences (2023). DOI: 10.1098/rspb.2023.1817
Most people who have pulled an all-nighter are all too familiar with that "tired and wired" feeling. Although the body is physically exhausted, the brain feels slap-happy, loopy and almost giddy.
Now neurobiologists are the first to uncover what produces this punch-drunk effect. In a new study, researchers induced mild, acute sleep deprivation in mice and then examined their behaviors and brain activity. Not only did dopamine release increase during the acute sleep loss period, synaptic plasticity also was enhanced—literally rewiring the brain to maintain the bubbly mood for the next few days.
These new findings could help researchers better understand how mood states transition naturally. It also could lead to a more complete understanding of how fast-acting antidepressants (like ketamine) work and help researchers identify previously unknown targets for new antidepressant medications.
Chronic sleep loss is well studied, and it's uniformly detrimental effects are widely documented and it is not good.Scientists long have known that acute perturbations in sleep are associated with altered mental states and behaviors. Alterations of sleep and circadian rhythms in patients, for example, can trigger mania or occasionally reverse depressive episodes.
But brief sleep loss—like the equivalent of a student pulling an all-nighter before an exam—is less understood. Now researchers found that sleep loss induces a potent antidepressant effect and rewires the brain. This is an important reminder of how our casual activities, such as a sleepless night, can fundamentally alter the brain in as little as a few hours.
Mingzheng Wu et al, Dopamine pathways mediating affective state transitions after sleep loss, Neuron (2023). DOI: 10.1016/j.neuron.2023.10.002. www.cell.com/neuron/fulltext/S0896-6273(23)00758-4
**
Biomimetic melanin heals skin injuries from sunburn and chemical burns
Melanin in humans and animals provides pigmentation to the skin, eyes and hair. The substance protects your cells from sun damage with increased pigmentation in response to sunlight—a process commonly referred to as tanning. That same pigment in your skin also naturally scavenges free radicals in response to damaging environmental pollution from industrial sources and automobile exhaust fumes.
Imagine a skin cream that heals damage occurring throughout the day when your skin is exposed to sunlight or environmental toxins. That's the potential of a synthetic, biomimetic melanin developed by scientists.
In a new study, scientists show that their synthetic melanin, mimicking the natural melanin in human skin, can be applied topically to injured skin, where it accelerates wound healing. These effects occur both in the skin itself and systemically in the body. When applied in a cream, the synthetic melanin can protect skin from sun exposure and heals skin injured by sun damage or chemical burns, the scientists said.
The technology works by scavenging free radicals, which are produced by injured skin such as a sunburn. Left unchecked, free radical activity damages cells and ultimately may result in skin aging and skin cancer.
Topical Application of Synthetic Melanin Promotes Tissue Repair, npj Regenerative Medicine (2023).
A new study reveals a previously undiscovered way that we can feel light touches: directly through our hair follicles. Before now, it was thought that only nerve endings in the skin and around the hair follicles could transmit the sensation.
Researchers used an RNA sequencing process to find that cells in part of the hair follicle called the outer root sheath (ORS) had a higher percentage of touch-sensitive receptors than equivalent cells in the skin.
Touch-sensing nerve cells are known as mechanoreceptors. They're the reason we can feel everything from a light breeze to a firm press. In this case, the hair follicle cells were interacting specifically with low-threshold mechanoreceptors (LTMRs), capable of feeling gentle touches.
A team of astronomers has found a new clue that a recently discovered near-Earth asteroid, Kamo`oalewa, might be a chunk of the moon. They hypothesized that the asteroid was ejected from the lunar surface during a meteorite strike–and they found that a rare pathway could have allowed Kamo`oalewa to get into orbit around the sun while remaining close to the orbits of the Earth and the Moon.
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!