Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: on Saturday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
Sand underpins everything from skyscrapers to smartphones. Sharp sand (as opposed to rounded desert sand) is the key ingredient in concrete, while high-purity silica sand is essential for making the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 5 Replies 0 Likes
Science communication series - part 15Scientists take lots of risks while coming out in public regarding their work. And sometimes they will have…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Mar 4. 151 Replies 1 Like
I came across this quote when I was in school. Since then I wanted to be like an eagle -…Continue
Tags: success, will, determination, scientists, obstacles
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Mar 4. 1 Reply 0 Likes
Q: Should we question science or just blindly believe what scientist say with research?Krishna:…Continue
Comment
Chinmo and Br-C belong to the large family of BTB-ZF transcription factors—proteins involved in cancer and that are also found in humans. Although previous studies had shown that Chinmo is a precursor of cancer, the role of Br-C and E93 in this disease was unknown until now.
Understanding the molecular functioning of cell growth can help to better comprehend cancer processes. Healthy cells grow, differentiate, and mature. In contrast, cancer cells grow uncontrollably, do not differentiate, and fail to mature. So determining the role of Chinmo, Br-C, and E93 may be key to future clinical research.
The study shows that while Chinmo is an oncogenic precursor because it promotes tissue growth and prevents differentiation, C-Br and E93 serve as tumor suppressors by activating tissue maturation.
The complete metamorphosis of insects such as butterflies and flies is an evolutionary innovation that has emerged gradually during the evolution from insects that undergo a much simpler metamorphosis, such as cockroaches. To understand how this gradual process has taken place, the researchers analyzed the function of Chinmo, Br-C, and E93 in cockroaches.
"Analyzing the function of these genes in different species of insects allows us to observe how evolution works. The observation that Chinmo function is conserved in insects as evolutionarily separated as flies and cockroaches gives us clues as to how metamorphoses originated.
The results of the study indicate that the regulatory action of Chinmo and E93 in more basal insects such as the cockroach are sufficient to determine the transition from the juvenile to the adult form.
Sílvia Chafino et al, Antagonistic role of the BTB-zinc finger transcription factors chinmo and broad-complex in the juvenile/pupal transition and in growth control, eLife (2023). DOI: 10.7554/eLife.84648
Part 2
A new study published on eLife has revealed that the Chinmo gene is responsible for establishing the juvenile stage in insects. It also confirms that the Br-C and E93 genes play a regulatory role in insect maturity. These genes, which are also present in humans, act as a promoter and as a suppressor, respectively, of cancerous processes.
The results of the research, which was carried out with the fruit fly Drosophila melanogaster and the cockroach Blatella germanica, reveal that these genes have been conserved throughout the evolution of insects. Therefore, it is thought that they could play a key role in the evolution of metamorphosis.
Insects that undergo complete metamorphosis, such as flies, go through the following three stages of development: the embryo, which is formed inside the egg; the larva (juvenile stage), which grows in several phases; and the pupa, which is the stage that encompasses metamorphosis and the formation of the adult organism.
Previous studies had discovered that the Br-C gene determines pupal formation in insects. In 2019, the same IBE team that has led this study described the essential function of E93 to complete metamorphosis in insects and initiate the maturation of the tissues that go on to form the adult. However, the gene responsible for determining the juvenile stage was unknown until now. This study has now identified the Chimno gene as the main precursor of this stage in insects.
By deleting the Chinmo gene in Drosophila specimens, the scientists observed that these insects progressed to the pupal stage without completing the juvenile stage, moving to the adult stage early. These findings thus confirm that Chinmo is essential for juvenile development.
Researchers have discovered that Chinmo promotes tissue growth during the juvenile stage of Drosophila by keeping the cells undifferentiated. Thus, while Chinmo is expressed, cells cannot differentiate as the gene suppresses the action of those genes responsible for forming adult tissues.
Thus, the study concludes that the Chinmo gene has to be inactivated for Drosophila to progress from the juvenile to the pupal stage and to carry out metamorphosis successfully. Likewise, it confirms that the sequential action of the three genes, namely Chinmo, Br-C, and E93, during the larval, pupal, and adult stages, respectively, coordinate the formation of the different organs that form the adult organism.
Part 1
Among the approximately 2,000 known species of termites, some are ecosystem engineers. The mounds built by some genera—for example Amitermes, Macrotermes, Nasutitermes, and Odontotermes—reach up to eight meters high, making them some of the world's largest biological structures. Natural selection has been at work improving the 'design' of their mounds over tens of millions of years. What might human architects and engineers learn if they go to the termites and consider their ways?
--
Why chronic stress also upsets the gutChronic stress can worsen the symptoms of inflammatory bowel disease (IBD), such as abdominal pain, diarrhoea and fatigue — and now scientists have discovered why. Chemical cues produced in the brain lead to a cascade of events tha.... Those cells release molecules that would normally fight off pathogens but end up causing painful bowel inflammation. Conventional medical treatment has “completely neglected the psychological state of a patient as a major driver of [the] response to treatment”, says microbiologist and study co-author Christoph Thaiss. |
The entire family of coronaviruses is equipped with multiple methods of evading the human immune system, and two new studies have taken a deep dive into how these viruses, including SARS-CoV-2, leverage highly specialized enzymes that keep human immune forces at bay.
The studies train a bright spotlight on the stealthy strategies that coronaviruses deploy to antagonize and destabilize human cells, steps scripted in their genetic code that ultimately help these viruses evade immune system assault.
Some members of the broad coronavirus family are more adept at these strategies than others. Indeed, one of the constants throughout the COVID pandemic has been the worrying discovery of a growing suite of molecular methods that SARS-CoV-2 uses to elude the human immune system. New research has opened a window into an evasion strategy in which coronaviruses destabilizes human cells and damages leap forward by comparing the evasion capabilities of milder coronaviruses to the trio of coronaviruses known to cause serious, even lethal respiratory infections.
Regardless of whether the coronavirus causes a bout with the common cold or serious infections, such as COVID-19 or MERS, most set the stage for immune evasion by damaging critical human proteins that prompt the immune response. Coronaviruses launch their attack by deploying the same type of protein-cleaving enzyme.
The researchers zeroed in on the viral enzymes known as papain-like proteases, protein-cleaving enzymes that evolved to help coronaviruses ensure their survival by damaging critical signaling proteins that regulate human cells. Once attacked by these enzymes, human cells become destabilized and lose their capacity to marshal innate immune system responses.
While these enzymes have been elucidated in the trio of dangerous coronaviruses, researchers have identified protein-like proteases—PLPs—in HCoV-229E, HCoV-HKU1, and HCoV-OC43, three coronaviruses that cause the common cold. Their enzymatic properties correlated with their ability to suppress innate immune responses.
The researchers describe how coronaviruses use their PLPs to damage the protein ubiqutin and a related ubiquitin-like protein called ISG15. Human cells use ubiquitin and ISG15 as cell regulators. By damaging these regulating proteins, the innate immune response is impaired and the viruses are free to proliferate unchecked.
Yuxian Xiong et al, The substrate selectivity of papain-like proteases from human-infecting coronaviruses correlates with innate immune suppression, Science Signaling (2023). DOI: 10.1126/scisignal.ade1985
Dan Cao et al, The SARS-CoV-2 papain-like protease suppresses type I interferon responses by deubiquitinating STING, Science Signaling (2023). DOI: 10.1126/scisignal.add0082
Sudden infant death syndrome (SIDS) is a case where the death of an apparently healthy infant before their first birthday remains unexplained even after thorough investigation. Death generally seems to occur when infants are sleeping.
While rare, it is the leading post-neonatal infant death in the United States today, occurring in 103 out of 100,000 live births a year. Despite the initial success of national public health campaigns promoting safe sleep environments and healthier sleep positions in infants in the 1990s in the United States, rates of cases have remained the same over the last three decades.
Researchers here collected tissue from the San Diego Medical Examiner's Office related to infant deaths between 2004 and 2011. They then examined the brain stems of 70 infants who died during the period and tested them for consistent abnormalities.
They found that the serotonin 2A/C receptor is altered in sudden infant death cases compared to control cases of infant deaths. Previous research in rodents has shown that 2A/C receptor signaling contributes to arousal and autoresuscitation, protecting brain oxygen status during sleep. This new research supports the idea that a biological abnormality in some infants makes them vulnerable to death under certain circumstances.
The investigators here think that sudden infant death syndrome occurs when three things happen together: a child is in a critical period of cardiorespiratory development in their first year, the child faces an outside stressor like a face-down sleep position or sharing a bed, and the child has a biological abnormality that makes them vulnerable to respiratory challenges while sleeping.
Robin Haynes et al, Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): part I. Tissue-based evidence for serotonin receptor signaling abnormalities in cardiorespiratory- and arousal-related circuits, Journal of Neuropathology & Experimental Neurology (2023). DOI: 10.1093/jnen/nlad030
Animals using the most of efficient methods of searching for resources may well pay with their lives, scientists have discovered.
The findings, published today in Behavioral Ecology, reveal why animals may not always use a searching strategy that maximizes results.
How animals move through their habitat, particularly in search for food, is a major question in biology, and has application in how animals will respond to environmental change.
Numerous studies have demonstrated that a special kind of movement, known as Lévy motion, increases the ability to find resources because it includes long-distance moves between areas being searched, as well as periods of concentrated searching in one area. It has also been shown that a range of animals use this kind of movement.
This study is the first to demonstrate a potential cost of Lévy motion in an experiment, showing prey using Lévy motion are targeted twice as often as prey using Brownian motion—the movement observed in molecules in a gas, and thus a baseline expectation.
This is because the predators prefer to target prey that are moving with straighter paths of motion, possibly because this makes the future position of the prey more predictable.
This study demonstrates that prey animals might not always use a searching strategy that maximizes finding a resource because there might be costs that were, previous to the study, unknown. This might explain why some studies have found animals use different kinds of searches other than Lévy motion.
This study shows, for the first time, that animals using a common and very effective way of searching for resources may actually pay a cost of being more susceptible to predators.
Christos C Ioannou et al, Virtual prey with Lévy motion are preferentially attacked by predatory fish, Behavioral Ecology (2023). DOI: 10.1093/beheco/arad039
The biology underpinning a rare genetic mutation that allows its carrier to live virtually pain-free, heal more rapidly and experience reduced anxiety and fear, has been uncovered by new research.
The study, published in Brain, follows up the team's discovery in 2019 of the FAAH-OUT gene and the rare mutations that cause a woman, Jo Cameron, to feel virtually no pain and never feel anxious or afraid. The new research describes how the mutation in FAAH-OUT "turns down" FAAH gene expression, as well as the knock-on effects on other molecular pathways linked to wound healing and mood. It is hoped the findings will lead to new drug targets and open up new avenues of research in these areas.
Jo, who lives in Scotland, was first referred to pain geneticists at UCL in 2013, after her doctor noticed that she experienced no pain after major surgeries on her hip and hand. After six years of searching, they identified a new gene that they named FAAH-OUT, which contained a rare genetic mutation. In combination with another, more common mutation in FAAH, it was found to be the cause of Jo's unique characteristics.
The area of the genome containing FAAH-OUT had previously been assumed to be "junk" DNA that had no function, but it was found to mediate the expression of FAAH, a gene that is part of the endocannabinoid system and that is well-known for its involvement in pain, mood and memory.
In this study, the team from UCL sought to understand how FAAH-OUT works at a molecular level, the first step towards being able to take advantage of this unique biology for applications like drug discovery.
The team observed that FAAH-OUT regulates the expression of FAAH. When it is significantly turned down as a result of the mutation carried by Jo Cameron, FAAH enzyme activity levels are significantly reduced.
Hajar Mikaeili et al, Molecular basis of FAAH-OUT-associated human pain insensitivity, Brain (2023). DOI: 10.1093/brain/awad098
The researchers realized that they could design an electricity harvester based around this number. This harvester would be made from a thin layer of material filled with nanopores smaller than 100 nm that would let water molecules pass from the upper to the lower part of the material. But because each pore is so small, the water molecules would easily bump into the pore's edge as they pass through the thin layer. This means that the upper part of the layer would be bombarded with many more charge-carrying water molecules than the lower part, creating a charge imbalance, like that in a cloud, as the upper part increased its charge relative to the lower part. This would effectually create a battery—one that runs as long as there is any humidity in the air.
Xiaomeng Liu et al, Generic Air‐Gen Effect in Nanoporous Materials for Sustainable Energy Harvesting from Air Humidity, Advanced Materials (2023). DOI: 10.1002/adma.202300748. onlinelibrary.wiley.com/doi/10.1002/adma.202300748
Part 2
A team of engineers has recently shown that nearly any material can be turned into a device that continuously harvests electricity from humidity in the air. The secret lies in being able to pepper the material with nanopores less than 100 nanometers in diameter. The research appeared in the journal Advanced Materials.
The air contains an enormous amount of electricity. Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt—but we don't know how to reliably capture electricity from lightning. What the engineers have done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.
The heart of the man-made cloud depends on what the engineers call the "generic Air-gen effect".
It builds on an earlier work completed in 2020 showing that electricity could be continuously harvested from the air using a specialized material made of protein nanowires grown from the bacterium Geobacter sulfurreducens.
The ability to generate electricity from the air turns out to be generic: literally any kind of material can harvest electricity from air, as long as it has a certain property. That property: "It needs to have holes smaller than 100 nanometers (nm), or less than a thousandth of the width of a human hair."
This is because of a parameter known as the "mean free path," the distance a single molecule of a substance, in this case water in the air, travels before it bumps into another single molecule of the same substance. When water molecules are suspended in the air, their mean free path is about 100 nm.
part1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!