Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 15 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 1 Reply 0 Likes
Q: How did Krishna become blue as he was originally black?Krishna: I will answer this question from a scientific point of view.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 17 hours ago. 1 Reply 0 Likes
A vast number of chemicals are registered for production and use around the world. But only a portion have been…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
How nature organizes itself, from brain cells to ecosystemsYou'll see it everywhere: the way trees form branches, the way cities divide into neighborhoods, the way the brain organizes into regions.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Beneficial genetic changes observed in regular blood donorsResearchers have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous…Continue
Comment
How electricity can heal wounds three times faster
Chronic wounds are a major health problem for diabetic patients and the elderly—in extreme cases they can even lead to amputation. Using electric stimulation, researchers have developed a method that speeds up the healing process, making wounds heal three times faster.
For most people, a small wound does not lead to any serious complications, but many common diagnoses make wound healing far more difficult. People with diabetes, spinal injuries or poor blood circulation have impaired wound healing ability. This means a greater risk of infection and chronic wounds—which in the long run can lead to such serious consequences as amputation.
Electric guidance of cells for faster healing
The researchers worked from an old hypothesis that electric stimulation of damaged skin can be used to heal wounds. The idea is that skin cells are electrotactic, which means that they directionally "migrate" in electric fields. This means that if an electric field is placed in a petri dish with skin cells, the cells stop moving randomly and start moving in the same direction.
The researchers investigated how this principle can be used to electrically guide the cells in order to make wounds heal faster. Using a tiny engineered chip, the researchers were able to compare wound healing in artificial skin, stimulating one wound with electricity and letting one heal without electricity. The differences were striking.
Researchers were able to show that the old hypothesis about electric stimulation can be used to make wounds heal significantly faster. In order to study exactly how this works for wounds, they developed a kind of biochip on which they cultured skin cells, which they then made tiny wounds in. Then they stimulated one wound with an electric field, which clearly led to it healing three times as fast as the wound that healed without electric stimulation.
In the study, the researchers also focused on wound healing in connection with diabetes, a growing health problem worldwide. One in 11 adults today has some form of diabetes according to the World Health Organization (WHO) and the International Diabetes Federation.
The researchers have also looked at diabetes models of wounds and investigated whether this method could be effective even in those cases. They saw that when they mimicked diabetes in the cells, the wounds on the chip healed very slowly. However, with electric stimulation they could increase the speed of healing so that the diabetes-affected cells almost corresponded to healthy skin cells.
Sebastian Shaner, Anna Savelyeva, Anja Kvartuh, Nicole Jedrusik, Lukas Matter, José Leal, Maria Asplund. Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives. Lab on a Chip, 2023; 23 (6): 1531 DOI: 10.1039/D2LC01045C
Astronomers using data from NASA's Chandra X-ray Observatory and other telescopes have identified a new threat to life on planets like Earth: a phase during which intense X-rays from exploded stars can affect planets over 100 light-years away. This result has implication for the study of exoplanets and their habitability.
This newly found threat comes from a supernova's blast wave striking dense gas surrounding the exploded star. When this impact occurs it can produce a large dose of X-rays that reaches an Earth-like planet months to years after the explosion and may last for decades. Such intense exposure may trigger an extinction event on the planet.
A new study reporting this threat is based on X-ray observations of 31 supernovae and their aftermath—mostly from NASA's Chandra X-ray Observatory, Swift and NuSTAR missions, and ESA's XMM-Newton—show that planets can be subjected to lethal doses of radiation located as much as about 160 light-years away. Four of the supernovae in the study (SN 1979C, SN 1987A, SN 2010jl, and SN 1994I) are shown in composite images containing Chandra data in the supplemental image.
If a torrent of X-rays sweeps over a nearby planet, the radiation could severely alter the planet's atmospheric chemistry. For an Earth-like planet, this process could wipe out a significant portion of ozone, which ultimately protects life from the dangerous ultraviolet radiation of its host star. It could also lead to the demise of a wide range of organisms, especially marine ones at the foundation of the food chain, leading to an extinction event.
Ian R. Brunton et al, X-Ray-luminous Supernovae: Threats to Terrestrial Biospheres, The Astrophysical Journal (2023). DOI: 10.3847/1538-4357/acc728
Eighteen international experts contributed to the study. Just published in the journal Science, it is the outcome of a virtual scientific workshop held in December 2020, which 62 researchers from 35 countries attended.
In their study, the experts describe the rapidly worsening loss of species with the aid of sobering figures: they estimate that human activities have altered roughly 75% of the land surface and 66% of the marine waters on our planet. This has occurred to such an extent that today, approximately 80% of the biomass from mammals and 50% of plant biomass has been lost, while more species are in danger of extinction than at any time in human history. In this regard, global warming and the destruction of natural habitats not only lead to biodiversity loss, but also reduce the capacity of organisms, soils and sediments to store carbon, which in turn exacerbates the climate crisis.
Because each organism has a certain tolerance range for changes to its environmental conditions (e.g., temperature), global warming is also causing species' habitats to shift. Mobile species follow their temperature range and migrate toward the poles, to higher elevations (on land, mountain ranges) or to greater depths (in the ocean). Sessile organisms like corals can only shift their habitats very gradually, in the course of generations: as such, they are caught in a temperature trap, which means that large coral reefs could, in the long term, disappear entirely. And mobile species, too, could run into climatic dead ends in the form of mountain summits, the coasts of landmasses and islands, at the poles and in the ocean's depths, if they can no longer find any habitat with suitable temperatures to colonize. In order to address these multiple crises, the researchers propose an ambitious combination of emissions reduction, restoration and protection measures, intelligent land-use management, and promoting cross-institutional competencies among political actors. Needless to say, a massive reduction of greenhouse-gas emissions and reaching the 1.5-degree target continue to be at the top of the priorities list.
H.-O. Pörtner, Overcoming the coupled climate and biodiversity crises and their societal impacts, Science (2023). DOI: 10.1126/science.abl4881. www.science.org/doi/10.1126/science.abl4881
Part 2
**
Human beings have massively changed the Earth system. Greenhouse-gas emissions produced by human activities have caused the global mean temperature to rise by more than 1.1°C compared to the preindustrial era. And every year, there are additional emissions of carbon dioxide, methane and other greenhouse gases, currently amounting to more than 55 gigatons of carbon dioxide equivalent.
This unprecedented climate crisis has consequences for the entire planet—the distribution of precipitation is shifting, global sea level is rising, extreme weather events are becoming more frequent, the ocean is becoming more acidic, and anoxic zones continue to expand.
The climate crisis they themselves caused is likely the greatest challenge that homo sapiens have faced in their 300,000-year history.
Yet at the same time another, equally dangerous crisis is unfolding, one that is often overlooked—the dramatic loss of plant and animal species across the planet. The two catastrophes—the climate crisis and biodiversity crisis—are interdependent and mutually amplifying, which is why they should never be seen as two separate things. Consequently, a new review study shows in detail the connections between the climate crisis and biodiversity crisis and presents solutions for addressing both catastrophes and mitigating their social impacts, which are already dramatic.
Part 1
In this study, Prof. Ishikawa and his colleagues took a stool sample and multiple blood samples from 96 healthy participants living in Okinawa, starting before the first dose of the vaccine, and ending a month after the second dose.
They then did a broad analysis, looking at all the genes from immune cells in the blood and bacteria in the gut to see if there was any association with an individual's T-cell and antibody levels.
The researchers did not find a significant link to antibody levels, but they did find that individuals that had a lower T-cell response also had a gut microbiome with a high activity of fucose digestion.
The team also found that individuals with a reduced T-cell response had higher expression of two genes, FOS and ATF3, prior to vaccination. These genes are expressed by blood immune cells, and code for proteins that are part of a larger group, called AP-1 transcription factors. Previous research has shown that different AP-1 transcription factors control T-cell survival and activity, but the exact role and function of these two proteins remains unknown.
Individuals with higher expression of FOS and ATF3 prior to vaccination also had microbiomes with high activity of fucose digestion, suggesting that the gut's impact on the immune system is through a pathway that involves FOS and ATF3.
"The mechanism is not yet proven, but we propose that fucose digestion leads to increased baseline expression of FOS and ATF3 in blood immune cells, which in turn weakens the response to the COVID-19 vaccine," said Masato Hirota, first author and Ph.D. student in the Immune Signal Unit. "It's clear that the gut bacteria have an important impact on the overall health of the immune system."
Part 2
Gut bacteria that break down a sugar called fucose could be dampening our immune response to the COVID-19 mRNA vaccine, according to a study by researchers.
The scientists report that increased fucose digestion by bacteria in the gut before vaccination was associated with lower numbers of T-cells activated by vaccination. T-cells are an important type of blood immune cell that are activated by a specific strain of bacteria or virus, and then multiply to fight the infection.
The findings, published April 20 in Communications Biology, illustrate the important impact that the trillions of bacteria in our gut—collectively called our 'gut microbiome'— have on our immune health and adds a missing piece to the puzzle of why vaccination varies in effectiveness from person to person.
While this research focused on the response to the COVID-19 Pfizer mRNA vaccine, the researchers think their results could also be relevant for other mRNA vaccines in development that protect against other infectious diseases, and even cancer.
The researchers now plans to experimentally manipulate the gut bacteria in mice and investigate the exact mechanism of FOS and ATF3, to further understand the link between the microbiome, blood immune cells and the overall immune response.
Human immune and gut microbial parameters associated with inter-individual variations in COVID-19 mRNA vaccine-induced immunity, Communications Biology (2023). DOI: 10.1038/s42003-023-04755-9
Part 1
The researchers used charged polymethylmethacrylate particles with different diameters (large and small) to carry out the experiment. A low-polar solvent, cyclohexyl bromide, was used as a dispersing agent.
As the researchers point out, although in both granular (e.g., nut) and colloidal mixtures the "Brazil nut effect" occurs, the mechanisms for its formation are completely different. In the case of a nut mixture, as a result of shaking, smaller nuts fill in the gaps created at the bottom, pushing the larger nuts to the top.
Meanwhile, the charged particles in the colloid make Brownian motion as a result of collisions with the surrounding solvent molecules. "Each particle is positively charged. Heavier but larger particles have a greater charge, so they repel each other more strongly, making them move upward more easily than smaller but lighter particles
The discovery of the "Brazil nut effect" in mixtures of colloidal particles can be used in many fields from geology to soft matter physics. It can also find application in industry such as in the stability of paint and ink.
Marjolein N. van der Linden et al, Realization of the Brazil-nut effect in charged colloids without external driving, Proceedings of the National Academy of Sciences (2023). DOI: 10.1073/pnas.2213044120
Part 2
Physicists have observed—for the first time experimentally—the Brazil nut effect in a mixture of charged colloidal particles.
Until now, it was thought that an influx of external energy was required to create this effect—but the researchers were able to confirm that the process can occur spontaneously.
Shake an open bag of mixed nuts. Have you noticed that after such a procedure, the largest nuts in the mixture—Brazil nuts—float to the top? The phenomenon of large objects rising to the surface of a mixture of small objects, bearing the professional name of granular convection, is popularly referred to "the Brazil nut effect" and occurs commonly in nature. It can also be observed by shaking, for example, a bucket of sand and pebbles.
This unusual effect contradicts the intuition that heavier objects should sink to the bottom due to gravity and inertia force. This is the case with the phenomenon of sedimentation, common in nature, a process involving the sinking of solid particles dispersed in a liquid, under the influence of gravity or inertia forces. Sedimentation plays a role in processes such as the formation of sedimentary rocks, and is also used to purify water and wastewater or isolate cells from blood.
Until now, it was thought that an influx of external energy, such as shaking the bag, was necessary to create the Brazil nut effect. However, theoretical models being developed suggested that the phenomenon could occur spontaneously, without the supply of external energy. The theoretical calculations were confirmed experimentally for the first time by a group of experimental and theoretical physicists.
They have shown that the Brazil nut effect can take place in a mixture of charged colloidal particles driven solely by Brownian motions and repulsion of electric charges.
Part 1
researchers have revealed the molecular structure of a cell-killing toxin produced by the bacterium Serratia marcescens.
S. marcescens is commonly involved in hospital-acquired infections – including respiratory diseases, bloodstream and urinary tract infections – and has developed resistance to many commonly used antibiotics.
Researchers discovered the toxin is able to inject itself into and kill a wide range of living cells, including in humans and livestock, insects, and plants.
The team determined the three-dimensional structure of Ssp using X-ray crystallography and identified a specific domain that promotes cell entry. It might also break down protein targets within the cell to cause its death – though more research is needed to confirm this.
The finding, published in Nature Communications, could lead to the development of new antimicrobial treatments and circumvent the use of antibiotics.
By understanding what Ssp looks like scientists can now develop targeted inhibitors.
These inhibitors or antimicrobials may be developed to bind to the part of Ssp responsible for injecting itself into cells.
https://www.nature.com/articles/s41467-023-36719-2
New inhibitors of the Ssp toxin, could be used to ‘disarm’ S. marcescens and reduce the sickness during infections. This would circumvent the use of antibiotics.
https://www.latrobe.edu.au/news/articles/2023/release/new-cell-kill...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!