Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 10 Replies 0 Likes
Earlier I wrote about convergent evolution that took very little time(1). Now we have another story of rapid one to show the deniers!Deniers? ! Yes! Watch this video on how creationists confront the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 16 Replies 0 Likes
Many times people who are evolution deniers (creationists) argue that there is no proof of evolution. It takes thousands of years for evolution to take place and therefore it cannot be observed and…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 4 Replies 0 Likes
Crawly creepy creatures. Big eyes and protruding tongues. Hissing sounds and hoods in ready to attack poses.What would people do if they came across such things? Take a stick and hit them repeatedly…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 3 Replies 0 Likes
Q: Dr. Krishna, I read your answer to the question, "What is the difference between venomous snakes and poisonous snakes?" …Continue
Comment
Female researchers face challenges participating in fieldwork in India — from trained local residents refusing to work with women to objections from family members over travel, prejudices surrounding the type of work considered appropriate for women, and a lack of role models. Although the extent of the effect is hard to measure, women in the country are under-represented in fields that require extensive fieldwork such as geology, evolutionary biology and environmental studies. “Changing that image of what a scientist and a field researcher should look like, should be the first step. Let’s start there,” says evolutionary biologist Ashwini Mohan.
https://www.rukhmabai.com/despite-progress-fieldwork-remains-a-stum...
Once thought incapable of encoding proteins due to their simple monotonous repetitions of DNA, tiny telomeres at the tips of our chromosomes seem to hold a potent biological function that's potentially relevant to our understanding of cancer and aging.
Reporting in the Proceedings of the National Academy of Sciences
researchers made the stunning discovery that telomeres contain genetic information to produce two small proteins, one of which they found is elevated in some human cancer cells, as well as cells from patients suffering from telomere-related defects.
Based on this research, they think simple blood tests for these proteins could provide a valuable screen for certain cancers and other human diseases. These tests also could provide a measure of 'telomere health,' because we know telomeres shorten with age.
Telomeres contain a unique DNA sequence consisting of endless repeats of TTAGGG bases that somehow inhibit chromosomes from sticking to each other. Two decades ago, researchers showed that the end of a telomere's DNA loops back on itself to form a tiny circle, thus hiding the end and blocking chromosome-to-chromosome fusions. When cells divide, telomeres shorten, eventually becoming so short that the cell can no longer divide properly, leading to cell death.
Scientist first identified telomeres about 80 years ago, and because of their monotonous sequence, the established dogma in the field held that telomeres could not encode for any proteins, let alone ones with potent biological function.
Researchers now conducted experiments—as described in the PNAS paper—to show how telomeric DNA can instruct the cell to produce signaling proteins they termed VR (valine-arginine) and GL (glycine-leucine). Signaling proteins are essentially chemicals that trigger a chain reaction of other proteins inside cells that then lead to a biological function important for health or disease.
They then chemically synthesized VR and GL to examine their properties using powerful electron and confocal microscopes along with state-of-the-art biological methods, revealing that the VR protein is present in elevated amounts in some human cancer cells, as well as cells from patients suffering from diseases resulting from defective telomeres.
It is it's possible that as we age, the amount of VR and GL in our blood will steadily rise, potentially providing a new biomarker for biological age as contrasted to chronological age. Scientists think inflammation may also trigger the production of these proteins.
Al-Turki, Taghreed M. et al, Mammalian telomeric RNA (TERRA) can be translated to produce valine–arginine and glycine–leucine dipeptide repeat proteins, Proceedings of the National Academy of Sciences (2023). DOI: 10.1073/pnas.2221529120
According to this new discovery, stark black-white distinctions and small dark patches are particularly effective in thwarting horsefly attack. These characteristics specifically eliminate the outline of large monochrome dark patches that are attractive to horseflies at close distances.
A team of researchers theorized that the thin back stripes serve to minimize the size of local features on a zebra that are appealing to the biting flies.
We knew that horseflies are averse to landing on striped objects—a number of studies have now shown this, but it is not clear which aspects of stripes they find aversive. Is it the thinness of the stripes? The contrast of black and white? The polarized signal that can be given off objects? So researchers set out to explore these issues using different patterned cloths draped over horses and filmed incoming horseflies.
The team found that tabanid horseflies are attracted to large dark objects in their environment but less to dark broken patterns. All-gray coats were associated with by far the most landings, followed by coats with large black triangles placed in different positions, then small checkerboard patterns in no particular order. In another experiment, they found contrasting stripes attracted few flies whereas more homogeneous stripes were more attractive.
This suggests that any hoofed animal that reduces its overall dark outline against the sky will benefit in terms of reduced ectoparasite attack.
Tim Caro et al, Why don't horseflies land on zebras?, Journal of Experimental Biology (2023). DOI: 10.1242/jeb.244778
The virus that causes COVID-19, called SARS-CoV-2, uses its spike protein in order to stick to and infect our cells. The final step for the virus to enter our cells is for part of its spike protein to act like a twist tie, forcing the host cell's outer membrane to fuse with the virus.
Now researchers have generated a molecule based on the twisted part of the spike protein (called HR2), which sticks itself onto the virus and prevents the spike protein from twisting. The reason the longHR2_42 inhibitor may work against an evolving virus is that it is based on part of the spike protein that hasn't changed even as other parts have.
Kailu Yang et al, Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the prehairpin intermediate of the spike protein, Proceedings of the National Academy of Sciences (2022). DOI: 10.1073/pnas.2210990119
Conference: www.biophysics.org/2023meeting#/
Robots could be valuable assistants for most first responders, as they could help them to remotely monitor or intervene in areas that are inaccessible or life-threatening for humans. Firefighters, who are at high risk of getting injured during their missions, would undoubtedly benefit from the assistance of reliable mobile robots.
Researchers recently created an autonomous ground robot that could assist firefighters when they are tackling emergencies in indoor environments. Their system, introduced in the Journal of Field Robotics, could allow agents responding to fire emergencies to plan their interventions better, clearing safe paths for them to access affected areas and supporting them during evacuations.
This work is part of a project called HelpResponder, which aims to reduce the accident rates and mission times of intervention teams This is achieved using fixed beacons, drones, and ground robots. This new robot can monitor its surrounding environment, sharing the data it collects with human agents. This is achieved using various sensors that can measure the temperature, humidity and air quality in an indoor setting, as well as its position and the position of other objects. This data is then saved in a database that can be remotely accessed by firefighters through a smartphone application.
N. Fernández Talavera et al, An autonomous ground robot to support firefighters' interventions in indoor emergencies, Journal of Field Robotics (2023). DOI: 10.1002/rob.22150
M. Cristina Rodriguez-Sanchez et al, HelpResponder—System for the Security of First Responder Interventions, Sensors (2021). DOI: 10.3390/s21082614
Fernández Talavera, Sistema de navegación autónomo en entornos reales y simulados para situaciones de emergencia, BURJC Digital (2021). hdl.handle.net/10115/18048
Survey of fire victims in Spain. Fundacion MAPFRE(2021). www.fundacionmapfre.org/en/pub … -fire-in-spain-2014/
Juan Jesús Roldán-Gómez et al, A Survey on Robotic Technologies for Forest Firefighting: Applying Drone Swarms to Improve Firefighters' Efficiency and Safety, Applied Sciences (2021). DOI: 10.3390/app11010363
This old pic of evolution is misleading and incomplete. The problem with this old image is that first, it suggests a linear progression. The second is that it suggests that we are descendants of chimpanzees. And the third is that early Homo sapiens were not white – it’s actually a pretty recent phenomenon, around 7,500–8,500 BCE in Europe.
Heart failure is often identified only when the heart has already deteriorated. This is in large part because the cause is unknown for about 70% of people who experience heart failure.
Researchers now discovered that one of the earliest signs of heart failure is a change in how the heart produces energy, with findings offering a potential way to preempt heart failure before the heart begins to deteriorate.
The research may also help to explain the diversity of causes underlying heart failure.
Dysregulation of energy production is the earliest sign of heart failure. People associate deficiency in energy production with later stage heart failure, but these new findings show this could actually be the cause of heart failure, not a result.
In a healthy heart, a protein called lysine demethylase 8 (Kdm8) helps to maintain a balanced energy use, also known as metabolism, by repressing TBX15, another protein that decreases energy production.
In a study published recently in Nature Cardiovascular Research, the researchers analyzed a large dataset on gene expression, the process by which DNA is converted to proteins, in human hearts at a later stage of heart failure and found that KDM8 was less active. This allowed TBX15 to be more highly expressed, leading to changes in metabolism. Researchers also found that TBX15 was expressed at the highest levels in hearts where energy production genes were most strongly suppressed. There are many genes that help regulate energy production in our bodies, but researchers were able to identify changes in specific proteins that occur well before cardiac deterioration.
After identifying change in energy production as an early sign of heart failure, the research team drilled down further to explore how metabolic pathways could be modified to prevent the failure. In doing so they found that the nicotinamide adenine dinucleotide (NAD+) pathway, which regulates energy metabolism, was less active. The team was then able to intervene and prevent heart failure in a mouse model by providing NAD+ injections and boosting energy production. This research suggests it may be possible to alter certain metabolic pathways to prevent heart failure before damage to the heart begins.
Abdalla Ahmed et al, KDM8 epigenetically controls cardiac metabolism to prevent initiation of dilated cardiomyopathy, Nature Cardiovascular Research (2023). DOI: 10.1038/s44161-023-00214-0
Ginger has a reputation for stimulating the immune system. New results from research now support this thesis. In laboratory tests, small amounts of a pungent ginger constituent put white blood cells on heightened alert. The study also shows that this process involves a type of receptor that plays a role in the perception of painful heat stimuli and the sensation of spiciness in food.
Whether as a medicinal plant or foodstuff, ginger is also becoming increasingly popular. However, even though ginger consumption has increased, the question arises as to whether normal consumption levels are sufficient to achieve health effects. And if so, which compounds and molecular mechanisms play a role in this.
To help clarify these questions, researchers conducted extensive research.
As the study shows, significant amounts of pungent ginger compounds enter the blood about 30 to 60 minutes after consuming one liter of ginger tea. By far the highest levels were achieved by [6]-gingerol, with plasma concentrations of approximately 7 to 17 micrograms per liter.
The pungent compound is known to exert its "taste" effect via the so-called TRPV1 receptor, an ion channel located on the surface of nerve cells that responds to painful heat stimuli as well as to pungent compounds from chili and ginger. Since some studies suggest that white blood cells also possess this receptor, the research team tested whether [6]-gingerol influences the activity of these immune cells.
In a first step, the team succeeded in detecting the receptor on neutrophil granulocytes. These cells make up about two-thirds of white blood cells and serve to combat invading bacteria. Further laboratory experiments by the research group also showed that even a very low concentration of almost 15 micrograms of [6]-gingerol per liter is sufficient to put the cells on heightened alert.
Thus, compared to control cells, the stimulated cells reacted about 30 percent more strongly to a peptide that simulates a bacterial infection. Addition of a TRPV1 receptor-specific inhibitor reversed the effect induced by [6]-gingerol.
Thus, at least in experiments, very low [6]-gingerol concentrations are sufficient to affect the activity of immune cells via the TRPV1 receptor. In blood, these concentrations could theoretically be achieved by consuming about one liter of ginger tea.
These results support the assumption that the intake of common amounts of ginger may be sufficient to modulate cellular responses of the immune system. Nevertheless, there are still many unanswered questions at the molecular, epidemiological and medical levels that need to be addressed with the help of modern food and health research.
Gaby Andersen et al, [6]‐Gingerol Facilitates CXCL8 Secretion and ROS Production in Primary Human Neutrophils by Targeting the TRPV1 Channel, Molecular Nutrition & Food Research (2022). DOI: 10.1002/mnfr.202200434
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!