Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 10 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 10 hours ago. 1 Reply 0 Likes
Thousands of tons of plastic pollution could be escaping into the environment every year … from our mouths. Most chewing gum on sale is made from a variety of oil-based synthetic rubbers—similar to…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 11 Replies 0 Likes
Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps. "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 2 Replies 0 Likes
When you are just a small creature in a world of things that want to eat you, one of the best strategies is to become invisible. No, not literally. But some creatures are so adept at blending into…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 10 Replies 0 Likes
Earlier I wrote about convergent evolution that took very little time(1). Now we have another story of rapid one to show the deniers!Deniers? ! Yes! Watch this video on how creationists confront the…Continue
Comment
Laser light therapy has been shown to be effective in improving short term memory in a study published in Science Advances.
Scientists
demonstrated that the therapy, which is non-invasive, could improve short term, or working memory in people by up to 25%.
The treatment, called transcranial photobiomodulation (tPBM), is applied to an area of the brain known as the right prefrontal cortex. This area is widely recognized as important for working memory. In their experiment, the team showed how working memory improved among research participants after several minutes of treatment. They were also able to track the changes in brain activity using electroencephalogram (EEG) monitoring during treatment and testing.
Previous studies have shown that laser light treatment will improve working memory in mice, and human studies have shown tPBM treatment can improve accuracy, speed up reaction time and improve high-order functions such as attention and emotion.
This is the first study, however, to confirm a link between tPBM and working memory in humans.
Chenguang Zhao et al, Transcranial photobiomodulation enhances visual working memory capacity in humans, Science Advances (2022). DOI: 10.1126/sciadv.abq3211. www.science.org/doi/10.1126/sciadv.abq3211
In recent years, many smartphone users have become concerned about the privacy of their data and the extent to which companies might have access to this data. As things stand today, the applications that users can run on their phone and what they can do with these applications is determined by a few big tech companies.
Researchers have recently set out on a quest to change this current trend, through the development of a new smartphone architecture called TEEtime. This architecture, introduced in a paper pre-published on arXiv, allows users to flexibly choose what resources on their smartphone they will dedicate to legacy operating systems, such as Android or iOS, and which they wish to keep for their own proprietary software and data.
Essentially, TEEtime isolates different domains, allowing users to decide the extent to which each of these domains has access to resources on their phone. This means that users could, for instance, run a navigation application in their own isolated domain, giving GPS access only to this domain and thus preventing Android/iOS from accessing their GPS data. The same could also be done with other peripherals, such as Bluetooth or the phone's in-built microphone and camera.
The introduction of domains has two main advantages in terms of giving users control over their devices. Firstly, it gives users full control of the privacy of their data, for instance allowing them to store their photos in a separate domain, where the user can make sure that no client-side scanning is performed. Note that in current phone ecosystems these features can be silently introduced without the user even noticing or having the possibility to opt-out.
The second advantage of the TEEtime architecture is that it can prevent censorship or increase resistance to it. In other words, if their operating service providers blocks an application or prevents them from installing it, they can still run it in a separate domain.
So far, the researchers tested a prototype of their architecture on an ARM emulator, a software tool often used to test operating systems and other smartphone software. These initial evaluations were promising, as they suggested that TEEtime works well and does not impact a system's security.
Friederike Groschupp et al, It's TEEtime: Bringing User Sovereignty to Smartphones, arXiv (2022). DOI: 10.48550/arxiv.2211.05206
Let’s stand up for life:Scientists in rebellion
The members of the movement Scientist Rebellion, call on life scien...
Our current economic and political structures have an increasingly devastating impact on the Earth’s climate and ecosystems: we are facing a biospheric emergency, with catastrophic consequences for both humans and the natural world on which we depend. Life scientists – including biologists, medical scientists, psychologists and public health experts – have had a crucial role in documenting the impacts of this emergency, but they have failed to drive governments to take action in order to prevent the situation from getting worse. Here we, as members of the movement Scientist Rebellion, call on life scientists to re-embrace advocacy and activism – which were once hallmarks of academia – in order to highlight the urgency and necessity of systemic change across our societies. We particularly emphasise the need for scientists to engage in nonviolent civil resistance, a form of public engagement which has proven to be highly effective in social struggles throughout history.
Whether we talk about threats to food security, global health or biodiversity, scientific messaging is either not getting through to the public or is being drowned out by sophisticated misinformation campaigns . There are now entire think tanks dedicated to occluding or misinterpreting scientific findings related to the biospheric emergency , and recent research highlights that accurate information about climate and ecology can easily be eroded by misinformation . To make matters worse, scientific responses to misinformation campaigns tend to be dispassionate and directed at those in power (who are keen to maintain the status quo), rather than passionate and directed at the people being misinformed: in short, a recipe for disaster
https://elifesciences.org/articles/83292?utm_source=Nature+Briefing...
Researchers have identified two, possibly even three, new minerals in a huge iron-ba.... The minerals have been named elaliite, after the meteorite’s location near the town of El Ali, and elkinstantonite after Lindy Elkins-Tanton, lead investigator of a NASA mission to a metal-rich asteroid. The 2-metre-wide meteorite has been well known to generations of people who live in the area, where it was named Nightfall.
--
During their pupal stage, between larva and adult, ants are immobile and were previously thought to be pretty much useless to the rest of the colony. Now researchers have discovered that they have a pivotal role, secreting a nutritious fluid that is drunk by adult ants and fed to.... Analogous to mammalian milk, the secretion seems to be essential for young larvae to grow strong and healthy. The pupae also receive parental care: if the secretion is not removed, it can hurt them. “It is really surprising that nobody else noticed this before,” says ethologist Patrizia d’Ettorre.
In early October, the research vessel Bold Horizon set sail from Newport, Oregon, and joined a small fleet of planes, drones, and other high-tech craft chasing the ocean’s shapeshifting physics. NASA’s Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) looks at whirlpools, currents, and other dynamics at the air-sea boundary. The goal is to understand how these dynamics drive the give-and-take of nutrients and energy between the ocean and atmosphere and, ultimately, help shape Earth’s climate.
Gut microbes influence binge-eating of sweet treats in mice
You just meant to have a single Oreo as a snack, but then you find yourself going back for another, and another, and before you know it, you have finished off the entire package even though you were not all that hungry to begin with.
But before you start feeling too guilty for your gluttony, consider this: It might not be entirely your fault. Now, new research in mice shows that specific gut bacteria may suppress binge eating behavior.
Oreos and other desserts are examples of so-called "palatable foods"—food consumed for hedonistic pleasure, not simply out of hunger or nutritional need. Humans are not alone in enjoying this kind of hedonism: Mice like to eat dessert, too. Even when they have just eaten, they will still consume sugary snacks if available.
The new study shows that the absence of certain gut bacteria causes mice to binge eat palatable foods: Mice with microbiotas disrupted by oral antibiotics consumed 50 percent more sugar pellets over two hours than mice with gut bacteria. When their microbiotas were restored through fecal transplants, the mice returned to normal feeding behavior. Further, not all bacteria in the gut are able to suppress hedonic feeding, but rather specific species appear to alter the behavior. Bingeing only applies to palatable foods; mice with or without gut microbiota both still eat the same amount of their regular diet. The findings show that the gut microbiota has important influences on behavior and that these effects can be modulated when the microbiota is manipulated.
https://www.cell.com/current-biology/fulltext/S0960-9822(22)01750-X
To track disease-carrying mosquitoes, researchers tag them with DNA barcodes
West Nile, Zika, dengue and malaria are all diseases spread by bites from infected mosquitoes. To track the threat of such diseases over large populations, scientists need to know where the mosquitoes are, where they've been, and where they might go.
But tracking mosquitoes is no easy task. The capture, tagging and release of single mosquitoes—as is commonly done with bats and other disease carriers—would be ridiculous, if not impossible. A common mosquito-tracking technique involves dousing the insects in fluorescent powder and letting them fly away, but the practice is error-prone and unreliable.
So scientists are now introducing a better way to perform mosquito-tracking for disease applications. Their new method, which involves getting larval mosquitoes to eat harmless particles made entirely of DNA and proteins, has the potential to revolutionize how people study mosquito-borne diseases.
The edible mosquito marker particles are porous protein crystals that self-assemble from a protein originally found in Camplyobacter jejuni bacteria. Since inventing these very small, non-toxic protein crystals that feature highly precise arrays of pores, researchers have been exploring diverse applications for them, like capturing virus particles to facilitate wastewater testing. They discovered they could insert fluorescent dyes or synthetic DNA into their crystals very easily, and the DNA wouldn't budge even after multiple washes and exposure to solvents.
They also performed a series of experiments that demonstrate the utility of these barcodes as tags capable of labeling millions of individual mosquitoes. So far, results are promising.
Here's how they do it: mosquito larvae ingest tasty biomass that's pre-loaded with the DNA crystals in solution. As the mosquitoes grow into adults, the DNA crystals remain intact in their guts, creating a code that can be later read through laboratory techniques like quantitative polymerase chain reaction.
The method the researchers are demonstrating is unique in one important way: Unlike conventional mosquito-tagging in which adult mosquitoes are extracted from traps and analyzed for disease, the DNA barcodes are ingested by the mosquitoes in their larval states, persisting with them as they become adults. In this way, researchers can not only track where the mosquitoes ended up, but where they started, and how they moved. Such insights could prove critical for disease-surveillance applications in the future.
Julius D Stuart, Daniel A Hartman, Lyndsey I Gray, Alec A Jones, Natalie R Wickenkamp, Christine Hirt, Aya Safira, April R Regas, Therese M Kondash, Margaret L Yates, Sergei Driga, Christopher D Snow, Rebekah C Kading. Mosquito tagging using DNA-barcoded nanoporous protein microcrystals. PNAS Nexus, 2022; 1 (4) DOI: 10.1093/pnasnexus/pgac190
Mom's dietary fat rewires male and female brains differently
More than half of all women in the United States are overweight or obese when they become pregnant. While being or becoming overweight during pregnancy can have potential health risks for moms, there are also hints that it may tip the scales for their kids to develop psychiatric disorders like autism or depression, which often affects one gender more than the other.
What hasn’t been understood however is how the accumulation of fat tissue in mom might signal through the placenta in a sex-specific way and rearrange the developing offspring’s brain.
To fill this gap researchers studied pregnant mice on a high-fat diet. In findings appearing November 28 in the journal Nature Metabolism, they found that mom’s high-fat diet triggers immune cells in the developing brains of male but not female mouse pups to overconsume the mood-influencing brain chemical serotonin, leading to depressed-like behaviour.
The researchers said a similar thing may be happening in humans, too.
They are now starting to work out how and why female offspring are impacted differently when mom amasses high levels of fat during pregnancy. Fat doesn’t lead to depression in female mice, but it does make them less social, perhaps due to an overconsumption of the pro-social hormone oxytocin, instead of serotonin.
For now, this research highlights that not all placentas are created equally. This work may one day help guide clinicians and parents in better understanding and possible treatment or prevention of the origins of some mood disorders by considering early environmental factors, like fat accumulation during gestation.
“Maternal Diet Disrupts the Placenta-Brain Axis in a Sex-Specific Manner,” Alexis M. Ceasrine, Benjamin A. Devlin, Jessica L. Bolton, Lauren A. Green, Young Chan Jo, Carolyn Huynh, Bailey Patrick, Kamryn Washington, Cristina L. Sanchez, Faith Joo, A. Brayan Campos-Salazar, Elana R. Lockshin, Cynthia Kuhn, Susan K. Murphy, Leigh Ann Simmons, Staci D. Bilbo. Nature Metabolism, Nov. 28, 2022. DOI: 10.1038/s42255-022-00693-8
To clear the way for planting wheat in November, a farmer in Punjab, India, sets aflame the leftover straw, or stubble, of a harvested rice paddy crop in October. The burning residue fills the air with carbon monoxide, ozone, and fine particulate matter (PM2.5) that will make it harder to breathe for days afterward and for miles around. It's a scene that's replicated on about 2 million farms in the Punjab and Haryana states of northwest India every autumn (and every spring after the wheat harvest), raising health risks—particularly of respiratory and cardiovascular diseases—and premature death rates downwind in India and throughout South Asia.
To date, government regulations, largely imposed at the state and national level, have been ineffective in curtailing crop residue burning in India. The practice continues apace, driven by the limited economic value of rice and wheat residues, and the ongoing need for cheap, ultrafast disposal of residues between harvesting and planting of the rotating crops. Such attempted bans are also deeply unpopular. A national ban on burning was repealed last year due to pressure from farmers, who see such legislation as further increasing the already-significant economic hardships faced by small-scale landowners.
In search of more effective solutions, a team of researchers at MIT and Harvard University estimated which burning events, in what locations and at what times, produced the greatest increases in population exposure, premature deaths, and economic losses in India during the years 2003–09. Then they quantified how small-scale and targeted actions could reduce air pollution and health risks for the entire population. Their findings appear in the journal Nature Communications.
Based on computer models of the seven-year study period, the researchers attributed between 44,000 and 98,000 PM2.5-exposure-related premature deaths annually to crop residue burning, with 67–90% occurring as a result of burning that took place in the Punjab, Haryana, and Uttar Pradesh states. They also found that six districts within Punjab—each with relatively high cultivation of residue-intensive crops and downwind population density—contributed 40% of India's annual air-quality impacts from the practice.
The research team next identified several opportunities to reduce crop residue burning and its attendant health effects. First, if farmers in Punjab were to burn crop residues two hours earlier in the day, they could avert up to 14% of air-quality impacts and about 10,000 deaths each year. They could achieve further reductions by adopting rice varieties such as basmati that require less residue burning. Finally, such targeted actions could achieve most of their benefits if adopted in just a few regions, given the large contribution from the aforementioned six districts in Punjab.
Ruoyu Lan et al, Air quality impacts of crop residue burning in India and mitigation alternatives, Nature Communications (2022). DOI: 10.1038/s41467-022-34093-z
Testing time perception in an unusually lifelike setting—a virtual reality ride on a New York City subway train—an interdisciplinary Cornell research team found that crowding makes time seem to pass more slowly.
As a result, rush-hour commutes on public transit may feel significantly longer than other rides that objectively take the same amount of time.
The research adds to evidence that social context and subjective feelings distort our sense of the passage of time, and may have practical implications for people's willingness to use public transit, particularly after the pandemic.
It's a new way of thinking about social crowding, showing that it changes how we perceive time. Crowding creates stressful feelings, and that makes a trip feel longer.
: Saeedeh Sadeghi et al, Affective experience in a virtual crowd regulates perceived travel time, Virtual Reality (2022). DOI: 10.1007/s10055-022-00713-8 Saeedeh
Saeedeh Sadeghi et al, Crowding and Perceived Travel Time in Public Transit: Virtual Reality Compared With Stated Choice Surveys, Transportation Research Record: Journal of the Transportation Research Board (2022). DOI: 10.1177/03611981221130346
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!