Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 16 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 1 Reply 0 Likes
Trans-fatty acids (TFA) are a major cause of cardiovascular diseases. These harmful fats can accumulate along artery walls, restricting blood flow and increasing the risk of heart attacks. According…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 18 hours ago. 1 Reply 0 Likes
Q: What alkaline water is good for health?Image source: Adobe…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 7 Replies 0 Likes
Interactive science seriesScience and religion:Q: Which of these two came first: science or religion? Krishna: If I say in the order…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Comment
First, they had to rule out that any microbes they found were indigenous to the habitat, and not the result of contamination from the extraction process. They used a technique they developed several years ago that involves sterilizing the outside of the sample before cutting it into slices to examine its contents.
Then, they used a cyanine dye to stain the slices. This dye binds to DNA, so if there is any DNA in the sample, it should light up like a Christmas tree when subjected to infrared spectroscopy. And this is exactly what happened.
The sample was also riddled with clay, which packed veins near the pockets in the rock near the microbial colonies.
The result of this clay packing was multifold: it provided a resource for the microbes to live on, with organic and inorganic materials that they could metabolize; and it effectively sealed the rock, both preventing the microbes from escaping, and preventing anything else from entering – including the drilling fluid.
The microbial community in the rock will need to be analyzed in greater detail, including DNA analysis, to determine how it has changed or not changed in the 2 billion years it has been sequestered away from the rest of life on Earth.
https://link.springer.com/article/10.1007/s00248-024-02434-8
Part 2
Deep underground, in the darkness far below the bustling activity on the surface, a community of microbes has been living their best lives in isolation.
What makes these organisms incredibly special is that they have been cut off for billions of years – far longer than any other community of subterranean microbes we've ever seen. This find of living microbes in 2 billion-year-old rock absolutely smashes the previous record of 100 million years.
And it's a significant one: microbes in isolated underground pockets like these tend to evolve more slowly, since they're detached from many of the pressures that drive evolution in more populated habitats.
This means that the microbe community can tell us things we might not have known about microbe evolution here on Earth. But it also suggests that there might be underground microbe communities still alive on Mars, surviving long after the water on the surface dried out.
By studying the DNA and genomes of microbes like these, we may be able to understand the evolution of very early life on Earth.
The sample of rock was drilled from 15 meters (50 feet) underground from a formation known as the Bushveld Igneous Complex in northeastern South Africa. This formation is huge, a 66,000 square kilometer (25,500 square mile) intrusion into Earth's crust that formed some 2 billion years ago from molten magma cooling below the surface.
Part 1
Regular fish consumption may lower the risk for tinnitus in women, according to a study published online Sept. 28 in the American Journal of Clinical Nutrition.
Researchers examined the longitudinal association between seafood intake and tinnitus. The analysis included 73,482 women participating in the Nurses' Health Study II (1991 to 2021).
The researchers found that seafood intake was independently associated with a lower risk for developing persistent tinnitus. Among participants who consumed one serving of fish per week, the risk for tinnitus was 13 percent lower; risk was 23 percent lower for those who consumed two to four servings per week and 21 percent lower for those who consumed five or more servings.
Higher intakes of tuna fish, light-meat fish, and shellfish all were associated with lower risk (e.g., consumption of tuna at least once weekly: adjusted hazard ratio [aHR], 0.84; light-meat fish: aHR, 0.91; shellfish: aHR, 0.82). There was a trend for a higher risk with dark-meat fish intake, while fish oil supplement use was associated with a higher risk (aHRs, 1.09 and 1.12, respectively).
"These findings indicate that dietary factors may be important in the pathogenesis of tinnitus," the authors write.
Sharon G. Curhan et al, Longitudinal Study of Seafood and Fish Oil Supplement Intake and Risk of Persistent Tinnitus, The American Journal of Clinical Nutrition (2024). DOI: 10.1016/j.ajcnut.2024.09.028
**
Plant-based diets, compassionate agriculture, Indigenous methods, consumer pressure, new laws, international agreements and even vegan pets—these are the solutions for fixing our broken food and farming systems, say dozens of environmental advocates, researchers, farmers and industry pioneers.
Warning that 'our food system is broken' and radical change is needed to mend it, they say, in our world where one‑third of food is lost or wasted, 780 million people are hungry, and three billion people cannot afford to eat healthily.
We have just sixty harvests left in our soils to save the future for our children. For people, animals and the planet, the clock is ticking. There is no time to lose. What we do now will define the next one thousand years.
In his chapter, scientist Tim Benton illuminates how increased meat consumption has been a major driver of our planetary crisis. "As demand has risen—partly because of a growing global population but mainly owing to increased meat consumption and the associated increase in demand for animal feed—so too has the use of chemical inputs such as fertilizer, pesticides and herbicides to maximize yields on existing cropland… Nature has suffered as a result. Food production is therefore a central cause of declining biodiversity, deforestation, water and air pollution and land degradation.
But far from simply tolling a klaxon of doom, they elicit hope by offering solutions for feeding the world, while nourishing our soils and protecting our species.
We can bridge the climate change emissions gap through ecological agriculture now, not at some point in the future. Even if only 10% of farms and pastures are managed regeneratively by maximizing photosynthesis and root exudates, we can mitigate emissions by fixing more living carbon in plants and building up carbon in soil.
The solution to hunger extinction and the climate emergency is to return to Earth and regenerate her biodiversity in soils, our farms, forests, our diets and our guts.
Joyce D'Silva et al, Regenerative Farming and Sustainable Diets, Regenerative Farming and Sustainable Diets (2024). DOI: 10.4324/9781032684369
But I think this is too alarmist although there is some truth in it.
**
Light pollution is more serious than expected: Moths not only lose their orientation directly under street lamps. Their flight behavior is also disturbed outside the cone of light.
The increasing use of artificial light at night is one of the most dramatic man-made changes on earth. Streetlights and illuminated buildings are significantly changing the environment for nocturnal animals.
Scientists have identified light pollution as one of the causes of the sharp decline in insects in recent years: many nocturnal insects fly to artificial light sources and circle around them incessantly. There they become easy prey for bats and other predators or eventually fall to the ground exhausted and die.
Moths are one group of nocturnal insects that are in significant decline. Their disappearance is also problematic because they play a key role in food webs and in the pollination of plants.
A new study now shows that the behavior of moths changes not only in the cone of light from street lamps, but also outside the illuminated area.
The results have been published in the Proceedings of the National Academy of Sciences.
This suggests that the effects of light pollution are not limited to direct attraction to light sources, but are much more far-reaching and complex than previously assumed.
What also emerged from the experiments is there is an interaction between the disorientation of the moths caused by artificial light and the moon. This depends on whether the moon is above or below the horizon.
Jacqueline Degen et al, Shedding light with harmonic radar: Unveiling the hidden impacts of streetlights on moth flight behavior, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2401215121
In this new study, researchers used records of sulfate (SO42-) concentration and temperature from 23 sites across the Mackenzie River Basin, the largest river system in Canada, to examine the sensitivity of the weathering process to rising temperatures. Sulfate, like CO2, is a product of sulfide weathering, and can be used to trace how fast this process occurs.
The results demonstrated that across the catchment, sulfate concentrations rose rapidly with temperature. During the past 60 years (from 1960 to 2020), sulfide weathering saw an increase of 45% as temperatures increased by 2.3°C. This highlights that CO2 released by weathering could trigger a positive feedback loop that would accelerate warming in Arctic regions.
Using these past records from rivers, the researchers predicted that CO2 released from the Mackenzie River Basin could double to 3 billion kg/year by 2100 under a moderate emission scenario.
Not all parts of the river catchment responded in the same way. Weathering was much more sensitive to temperature in rocky mountainous areas, and those covered with permafrost. By modeling the process, the researchers revealed that sulfide weathering was accelerated further by processes which break rocks up as they freeze and shatter.
Conversely, areas covered with peatland showed lower increases in sulfide oxidation with warming, because the peat protects the bedrock from this process.
Ella Walsh et al, Temperature sensitivity of the mineral permafrost feedback at the continental scale, Science Advances (2024). DOI: 10.1126/sciadv.adq4893. www.science.org/doi/10.1126/sciadv.adq4893
Part 2
Researchers from the Department of Earth Sciences at the University of Oxford have shown that weathering of rocks in the Canadian Arctic will accelerate with rising temperatures, triggering a positive feedback loop that will release more and more CO2 to the atmosphere. The findings have been published in the journal Science Advances.
For sensitive regions like the Arctic, where surface air temperatures are warming nearly four times faster than the global average, it is particularly crucial to understand the potential contribution of atmospheric CO2 from weathering.
One pathway happens when certain minerals and rocks react with oxygen in the atmosphere, releasing CO2 via a series of chemical reactions. For instance, the weathering of sulfide minerals (e.g., 'fool's gold') makes acid which causes CO2 to release from other rock minerals that are found nearby.
In Arctic permafrost, these minerals are being exposed as the ground thaws due to rising temperatures, which could act as a positive feedback loop to accelerate climate change.
Part 1
A team of chemical fiber and polymer material researchers has found that the use of internally produced, electrically charged sutures can speed up the healing process after surgery in rats. In their study published in Nature Communications, the group developed a type of suture that generates its own electricity while inside the body and tested it in a lab setting and in live rats.
Prior research has shown that the application of electricity to wounds can speed up healing—it attracts fibroblasts, which are a major part of the healing process. Prior research has also shown that applying electrical current to conductive sutures can promote healing. But these sutures require an external power source or a bulky battery. In this new effort, the research team found a way to power sutures using interactions between the sutures and surrounding tissue.
The sutures were made using biodegradable polymers and magnesium, both of which can be absorbed safely by the body over time.
When muscles and other tissue around the site of a surgical procedure move, the middle layer of the sutures rubs against the outer layer, transferring electrons. The resulting electricity moves through the rest of the suture, stimulating the tissue that has been sewn together.
The sutures are just 350 microns, the size needed for closing wounds. Because they are biodegradable, doctors would not have to remove them.
During lab experiments, the sutures were found to be capable of generating 2.3 volts during normal activity. When used with live tissue, the sutures were found to speed up healing by 50% compared to non-electrified sutures. They also resulted in lower bacterial levels, even when standard disinfectants were not used.
The research team next tested their sutures on rats and observed speedier recovery and fewer infections. They plan to test their sutures in larger animals before eventually moving on to trials in humans.
Zhouquan Sun et al, A bioabsorbable mechanoelectric fiber as electrical stimulation suture, Nature Communications (2024). DOI: 10.1038/s41467-024-52354-x
The ability to custom design new proteins—and better understand existing proteins—could enable researchers to create new kinds of medicines and vaccines. It could also allow scientists to design new enzymes to break down plastics or other waste materials, and to design fine-tuned sensors for hazardous materials.
There's fantastic prospects for making better medicines—medicines that are smarter, that only work in the right time and place in the body.
One example is a potential nasal spray that could slow or stop the rapid spread of specific viruses, such as COVID-19. Another is a medicine to disrupt the cascade of symptoms known as cytokine storm.
That was always the holy grail. If you could figure out how protein sequences folded into their particular structures, then it might be possible to design protein sequences to fold into previously never seen structures that might be useful for us.
www.nobelprize.org/prizes/chem … dvanced-information/
Part 2
© 2024 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!