Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 20 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: How Big is the universe?Krishna: The total size of the universe is not known, and some scientists think it could be many times larger than the observable portion. For example, one hypothesis…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Why do some people commit crimes? What does science say about it?Krishna: It is easy to blame people. But did you know that the way your brain wires or rewires because of different situations it…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
Cars may be a modern phenomenon, but motion sickness is not. More than 2,000 years ago, the physician …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
"De-evolution" or "devolution" is a concept suggesting that species can revert to more primitive forms over time.Some scientists don't accept this concept at all. They say Evolution is a continuous…Continue
Comment
Though chemotherapy can be lifesaving, the cancer treatment often leaves patients suffering from debilitating side effects, including cognitive impairments in processing speed, memory, executive function and attention. Dubbed "chemo brain," these lingering symptoms can dramatically impact patients' quality of life long after they have completed their cancer treatments.
This is the first evidence that chemotherapy alters an important cellular pathway called sphingolipid metabolism in critical areas of the brain linked to cognitive function.
Currently, there are no FDA-approved drugs to mitigate these deficits. In breakthrough findings, researchers have uncovered some of the molecular events that happen when chemotherapy drugs cause these deficits. More promising still, they've found that an already-approved FDA drug designed to treat multiple sclerosis also appears to work to reduce chemotherapy-related cognitive impairment (CRCI).
Silvia Squillace et al, Sphingosine-1-phosphate receptor 1 activation in the central nervous system drives cisplatin-induced cognitive impairment, Journal of Clinical Investigation (2022). DOI: 10.1172/JCI157738
Anxiety, autism, schizophrenia and Tourette syndrome each have their own distinguishing characteristics, but one factor bridging these and most other mental disorders is circadian rhythm disruption, according to a team of neuroscience, pharmaceutical sciences and computer science researchers .
In an article published recently in the Nature journal Translational Psychiatry, the scientists hypothesize that CRD is a psychopathology factor shared by a broad range of mental illnesses and that research into its molecular foundation could be key to unlocking better therapies and treatments.
Circadian rhythms regulate our bodies' physiological activity and biological processes during each solar day. Synchronized to a 24-hour light/dark cycle, circadian rhythms influence when we normally need to sleep and when we're awake. They also manage other functions such as hormone production and release, body temperature maintenance and consolidation of memories. Effective, nondisrupted operation of this natural timekeeping system is necessary for the survival of all living organisms.
Circadian rhythms are intrinsically sensitive to light/dark cues, so they can be easily disrupted by light exposure at night, and the level of disruption appears to be sex-dependent and changes with age. One example is a hormonal response to CRD felt by pregnant women; both the mother and the fetus can experience clinical effects from CRD and chronic stress.
Circadian rhythms play a fundamental role in all biological systems at all scales, from molecules to populations. This new work analysis found that circadian rhythm disruption is a factor that broadly overlaps the entire spectrum of mental health disorders.
The telltale sign of circadian rhythm disruption—a problem with sleep—was present in each disorder.While the focus was on widely known conditions including autism, ADHD and bipolar disorder, researchers argue that the CRD psychopathology factor hypothesis can be generalized to other mental health issues, such as obsessive-compulsive disorder, anorexia nervosa, bulimia nervosa, food addiction and Parkinson's disease. The researchers found ample evidence of the connection by thoroughly examining peer-reviewed literature on the most prevalent mental health disorders.
Amal Alachkar et al, The hidden link between circadian entropy and mental health disorders, Translational Psychiatry (2022). DOI: 10.1038/s41398-022-02028-3
Each ton of carbon dioxide that exits a smokestack or tailpipe is doing far more damage than what governments take into account, researchers conclude in a scientific paper published recently.
Major hurricanes pack more rain, while extremes of wildfire, drought and downpours are all happening more often and with more intensity due to climate change, causing loss of communities, homes and lives all over the world. But what is the actual cost in dollar terms of the carbon emissions driving climactic change?
That's what researchers from a variety of fields—science, economics, medicine—are trying to figure out through a metric called the social cost of carbon, a price that represents the total climate damage caused to society through carbon emissions. It's been used in the past to justify tougher limits on carbon emissions and more spending on climate solutions, like transitioning to renewable energy and natural flood protection.
Currently, the United States government uses a price of $51 per ton of carbon dioxide emitted, but the researchers wrote in the journal Nature that the price should be $185 per ton—3.6 times higher than the current U.S. standard.
David Anthoff, Comprehensive Evidence Implies a Higher Social Cost of CO2, Nature (2022). DOI: 10.1038/s41586-022-05224-9. www.nature.com/articles/s41586-022-05224-9
**
Europe's fiery summer: a climate 'reality check'?Wildfires and storms. Rivers at record lows. Parched crops withering in the fields. For many Europeans, this year's scorching summer means climate change is increasingly hard to ignore. |
There are lots of "rules" of nature explaining patterns that we see in life. For instance, Bergmann's rule explains why animals of the same species are bigger in higher latitudes. White-tailed deer in Canada are larger and bulkier than their skinny Floridian cousins. Bergmann's rule explains that this is because having a thicker body in relation to your surface area helps you retain heat better, the same way that big pieces of food take longer to cool down than smaller bites.
To try to find a pattern to explain the differences in size, the researchers used statistical analyses to compare measurements of 450 mouse skulls. They then tried to map their findings onto different biological rules to see if any fit. Bergmann's rule didn't work; there wasn't a strong correlation between mouse size and how far north or south the specimen lived. Other rules emphasize the role of temperature or precipitation, with mixed results for different groups and situations. This team did not find that latitude, or one of 19 other bioclimatic, temperature, or precipitation variables, best described the mice's varying shapes and sizes. However, there did seem to be a pattern with longitude— how far east or west the mice lived.
This might be related to what biologists call the "resource rule." This rule suggests that where there are more resources, individuals from the same species tend to be larger than where there are fewer resources. For instance, some deer mice that are found in deserts and other habitats tend to be smaller in drier portions of their habitats. Another hypothesis suggests that some animals tend to be smaller in mountains versus adjacent plains in North America. This new study found a mixed result of these rules.
Noé de la Sancha et al, Andean rain shadow effect drives phenotypic variation in a widely distributed Austral rodent, Journal of Biogeography (2022).
**
Mice grow bigger on the rainier sides of mountains: It might be a new rule of nature.
Scientists studying mice from the Andes Mountains in Patagonia noticed something they couldn't explain: the mice from the western side of the mountains were bigger than the ones from the east, but DNA said that they were all from the same species. The researchers examined the skulls of 450 mice from the southern tip of South America, and found that existing biological laws didn't explain the size differences. Instead, in a new paper in the Journal of Biogeography, the scientists put forth a new hypothesis: the mice on the western slopes were bigger because that side of the mountain range gets more rain, which means there's more plentiful food for the mice to eat.
There are a bunch of ecogeographic rules that scientists use to explain trends that we see again and again in nature. With this paper, researchers might have found a new one: the rain shadow effect can cause changes of size and shape in mammals.
Some individuals of the mice species were really big, and some were really small. Researchers thought they were different species. But their mitochondrial DNA suggested that they were one species, even though they're so different.
Part 1
Physicists on Earth are experimenting with matter which is about 3 billion times colder than deep space!
Physicists have used atoms about 3 billion times colder than interstellar space to open a portal to an unexplored realm of quantum magnetism.
Unless an alien civilization is doing experiments like these right now, anytime this experiment is running at Kyoto University, Japan, it is making the coldest fermions in the universe. Fermions are not rare particles. They include things like electrons and are one of two types of particles that all matter is made of.
Fermions are not rare particles. They include things like electrons and are one of two types of particles that all matter is made of.
Researchers used lasers to cool its fermions, atoms of ytterbium, within about one-billionth of a degree of absolute zero, the unattainable temperature where all motion stops. That's about 3 billion times colder than interstellar space, which is still warmed by the afterglow from the Big Bang.
The payoff of getting this cold is that the physics really changes. The physics starts to become more quantum mechanical, and it lets you see new phenomena.
Shintaro Taie, Observation of antiferromagnetic correlations in an ultracold SU(N) Hubbard model, Nature Physics (2022). DOI: 10.1038/s41567-022-01725-6. www.nature.com/articles/s41567-022-01725-6
Climate change:
This Hot Summer Is One of the Coolest of the Rest of Our Lives
Heat waves broke temperature records around the world this past summer, but it will still be one of the coolest summers of the next few decades!
Many of our bodily functions, such as walking, breathing, and chewing, are controlled by brain circuits called central oscillators, which generate rhythmic firing patterns that regulate these behaviours.
neuroscientists have now discovered the neuronal identity and mechanism underlying one of these circuits: an oscillator that controls the rhythmic back-and-forth sweeping of tactile whiskers, or whisking, in mice. This is the first time that any such oscillator has been fully characterized in mammals.
The research team found that the whisking oscillator consists of a population of inhibitory neurons in the brainstem that fires rhythmic bursts during whisking. As each neuron fires, it also inhibits some of the other neurons in the network, allowing the overall population to generate a synchronous rhythm that retracts the whiskers from their protracted positions.
Shwetha Srinivasan et al, Ligand-induced transmembrane conformational coupling in monomeric EGFR, Nature Communications (2022). DOI: 10.1038/s41467-022-31299-z
The experiments revealed that when the brain doesn't receive sensory messages from adipose tissue, programs triggered by the sympathetic nervous system—related to the conversion of white fat to brown fat—become overly active in fat cells, resulting in a larger than normal fat pad with especially high levels of brown fat, which breaks down other fat and sugar molecules to produce heat. Indeed, the animals with blocked sensory neurons—and high levels of sympathetic signaling—had increased body temperatures.
The findings suggest that the sensory neurons and sympathetic neurons might have two opposing functions, with sympathetic neurons needed to turn on fat burning and the production of brown fat, and sensory neurons required to turn these programs down.
This tells us that there's not just a one-size-fits-all instruction that brain sends adipose tissue. It's more nuanced than that; these two types of neurons are acting like a gas pedal and a brake for burning fat.
Li Ye, The role of somatosensory innervation of adipose tissues, Nature (2022). DOI: 10.1038/s41586-022-05137-7. www.nature.com/articles/s41586-022-05137-7
Part 2
**
For years, it was assumed that hormones passively floating through the blood were the way that a person's fat—called adipose tissue—could send information related to stress and metabolism to the brain. Now, Research scientists report in Nature that newly identified sensory neurons carry a stream of messages from adipose tissue to the brain.
The discovery of these neurons suggests for the first time that your brain is actively surveying your fat, rather than just passively receiving messages about it. The implications of this finding are profound.
This is yet another example of how important sensory neurons are to health and disease in the human body.
In mammals, adipose tissue stores energy in the form of fat cells and, when the body needs energy, releases those stores. It also controls a host of hormones and signaling molecules related to hunger and metabolism. In diseases including diabetes, fatty liver disease, atherosclerosis and obesity, that energy storage and signaling often goes awry. Researchers have long known that nerves extend into adipose tissue, but suspected they weren't sensory neurons that carry data to the brain. Instead, most hypothesized that the nerves in fat belonged mostly to the sympathetic nervous system—the network responsible for our fight-or-flight response, which switches on fat-burning pathways during times of stress and physical activity. Attempts to clarify the types and functions of these neurons have been difficult; methods used to study neurons closer to the surface of the body or in the brain don't work well deep in adipose tissue, where nerves are hard to see or to stimulate.
Part 1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!