Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 minute ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 22 hours ago. 1 Reply 0 Likes
Pathogen transmission can be modeled in three stages. In Stage 1, the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: Science does not understand energy and the supernatural world because science only studies the material world. Is that why scientists don't believe in magic, manifestation or evil eye? Why flatly…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: Why do I have four horizontal lines on my fingers? My child has the same thing.Krishna: You should have posted pictures of your fingers. I would like to see and then guess what condition it really…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: How strong is the human immune system…Continue
Comment
A new study from researchers published in Nature Medicine, estimates that 2.2 million new cases of type 2 diabetes and 1.2 million new cases of cardiovascular disease occur each year globally due to consumption of sugar-sweetened beverages.
In developing countries, the case count is particularly sobering. In Sub-Saharan Africa, the study found that sugar-sweetened beverages contributed to more than 21% of all new diabetes cases. In Latin America and the Caribbean, they contributed to nearly 24% of new diabetes cases and more than 11% of new cases of cardiovascular disease.
Colombia, Mexico, and South Africa are countries that have been particularly hard hit. More than 48% of all new diabetes cases in Colombia were attributable to consumption of sugary drinks. Nearly one-third of all new diabetes cases in Mexico were linked to sugary drink consumption. In South Africa, 27.6% of new diabetes cases and 14.6% of cardiovascular disease cases were attributable to sugary drink consumption.
Sugary beverages are rapidly digested, causing a spike in blood sugar levels with little nutritional value. Regular consumption over time leads to weight gain, insulin resistance, and a host of metabolic issues tied to type 2 diabetes and heart disease, two of the world's leading causes of death.
Sugar-sweetened beverages are heavily marketed and sold in low- and middle-income nations. Not only are these communities consuming harmful products, but they are also often less well equipped to deal with the long-term health consequences.
As countries develop and incomes rise, sugary drinks become more accessible and desirable, the authors say. Men are more likely than women to suffer the consequences of sugary drink consumption, as are younger adults compared to their older counterparts, the researchers say.
"We need urgent, evidence-based interventions to curb consumption of sugar-sweetened beverages globally, before even more lives are shortened by their effects on diabetes and heart disease", the researchers emphasize.
The study's authors call for a multi-pronged approach, including public health campaigns, regulation of sugary drink advertising, and taxes on sugar-sweetened beverages.
Laura Lara-Castor, Burdens of type 2 diabetes and cardiovascular disease attributable to sugar-sweetened beverages in 184 countries, Nature Medicine (2025). DOI: 10.1038/s41591-024-03345-4
To understand the complex relationships between face perception, mental state judgment, trait judgment, and situational effect, they used computational models to quantitatively select a large number of faces, mental state terms, trait terms, and situation descriptions that are representative of those people encounter in everyday life.
They asked participants to view faces and infer how much those individuals would feel certain mental states in given situations. The researchers also asked a separate group of participants to look at the same images of faces and infer the traits of the people they belonged to. Using the information they gathered, they then digitally manipulated the traits of faces.
The researchers quantified to which degree changing the perceived traits of a face would change people's expectations of how this individual may feel and think in different situations.
To make sure that their results can be applied to a wide range of populations, their data and models were based on participants from five continents: Africa, Asia, Europe, North America, and South America.
The researchers closely examined how their study participants thought specific people in images would feel 60 different mental states in 60 real-world scenarios.
The researchers found that 47 of these 60 mental state inferences were shaped by how the individual looks.
This means that in most circumstances, when other people are trying to understand how you feel and think, their understanding will be biased by their first impressions of your personality (which is not necessarily your true personality but just others' judgments).
Interestingly, the researchers found that first impressions shaped mental state inferences across participants living in all five continents on Earth. This suggests that their findings are robust and the effect they observed is relevant to all people, irrespective of their nationality or cultural background.
Chujun Lin et al, How trait impressions of faces shape subsequent mental state inferences, Nature Human Behaviour (2024). DOI: 10.1038/s41562-024-02059-4.
Part 2
To determine they had the correct gene, after decades of research, the team inserted the normal MAL gene into blood cells that were AnWj-negative. This effectively delivered the AnWj antigen to those cells.
The MAL protein is known to play a vital role in keeping cell membranes stable and aiding in cell transport. What's more, previous research found that the AnWj isn't actually present in newborn babies but appears soon after birth.
Interestingly, all the AnWj-negative patients included in the study shared the same mutation. However, no other cell abnormalities or diseases were found to be associated with this mutation.
Now that the researchers have identified the genetic markers behind the MAL mutation, patients can be tested to see if their negative MAL blood type is inherited or due to suppression, which could be a sign of another underlying medical problem.
These rare blood quirks can have devastating impacts on patients, so the more of them we can understand, the more lives can be saved.
https://ashpublications.org/blood/article-abstract/144/26/2735/5174...
If these markers do not match up when receiving a blood transfusion, this life-saving tactic can cause reactions or even end up being fatal.
Most major blood groups were identified early in the 20th century. Many discovered since, like the Er blood system first described by researchers in 2022, only impact a small number of people. This is also the case for the new blood group.
Previous research found more than 99.9 percent of people have the AnWj antigen that was missing from the 1972 patient's blood. This antigen lives on a myelin and lymphocyte protein, leading the researchers to call the newly described system the MAL blood group.
When someone has a mutated version of both copies of their MAL genes, they end up with an AnWj-negative blood type, like the pregnant patient. Researchers identified three patients with the rare blood type that didn't have this mutation, suggesting that sometimes blood disorders can also cause the antigen to be suppressed.
MAL is a very small protein with some interesting properties which made it difficult to identify and meant we needed to pursue multiple lines of investigation to accumulate the proof we needed to establish this blood group system.
Part 3
Blood type (or blood group) is determined, in part, by the ABO blood group antigens present on red blood cells. Antibodies in our blood plasma detect when a foreign antigen marker is present. (InvictaHOG/Public Domain/Wikimedia Commons)
Part 2
When a pregnant woman had her blood sampled back in 1972, doctors discovered it was mysteriously missing a surface molecule found on all other known red blood cells at the time.
After 50 years, this strange molecular absence finally led to researchers from the UK and Israel describing a new blood group system in humans. In September, the team published their paper on the discovery.
It represents a huge achievement, and the culmination of a long team effort, to finally establish this new blood group system and be able to offer the best care to rare, but important, patients.
While we're all more familiar with the ABO blood group system and the rhesus factor (that's the plus or minus part), humans actually have many different blood group systems based on the wide variety of cell-surface proteins and sugars that coat our blood cells.
Our bodies use these antigen molecules, amongst their other purposes, as identification markers to separate 'self' from potentially harmful not-selves.
Part 1
Life on Earth could not exist without carbon. But carbon itself could not exist without stars. Nearly all elements except hydrogen and helium—including carbon, oxygen and iron—only exist because they were forged in stellar furnaces and later flung into the cosmos when their stars died. In an ultimate act of galactic recycling, planets like ours are formed by incorporating these star-built atoms into their makeup, be it the iron in Earth's core, the oxygen in its atmosphere or the carbon in the bodies of Earthlings.
A team of scientists recently confirmed that carbon and other star-formed atoms don't just drift idly through space until they are dragooned for new uses. For galaxies like ours, which are still actively forming new stars, these atoms take a circuitous journey. They circle their galaxy of origin on giant currents that extend into intergalactic space.
These currents—known as the circumgalactic medium—resemble giant conveyer belts that push material out and draw it back into the galactic interior, where gravity and other forces can assemble these raw materials into planets, moons, asteroids, comets and even new stars.
The heavy elements that stars make get pushed out of their host galaxy and into the circumgalactic medium through their explosive supernovae deaths, where they can eventually get pulled back in and continue the cycle of star and planet formation.
So the same carbon in our bodies most likely spent a significant amount of time outside of the galaxy.
Samantha L. Garza et al, The CIViL* Survey: The Discovery of a C iv Dichotomy in the Circumgalactic Medium of L* Galaxies, The Astrophysical Journal Letters (2024). DOI: 10.3847/2041-8213/ad9c69
A team of chemical engineers has found that a type of plastic crystal can be used as a refrigerant, possibly replacing the greenhouse gas currently used in most refrigerators. Their study is published in the journal Science.
The most commonly used gas in modern refrigerators is R-134a, a hydrofluorocarbon that has largely replaced freon. And while it does not contribute to the breakdown of the Earth's ozone layer, it is a greenhouse gas and thus, as it leaks from refrigerators, contributes to global warming. In this new effort, the researchers have found a possible replacement—one that is not even a gas.
The idea involves the use of "plastic crystals"—so named because once they are grown, their molecules can move under certain conditions. Prior research had shown that when pressurized, the molecules in organic ionic crystals move from a disorganized state to a neat grid configuration. When pressure is released, the molecules return to their disorganized state. More importantly, when they are pressed into an organized state, the crystals absorb heat, which chills the air around them.
In their work, the researchers tested several types of such crystals to find one that viably chills the air around it when compressed at ambient temperatures. They found several that were capable of pulling heat from the air at temperatures ranging from -37°C to 10°C.
To use the crystals as a refrigerant, the researchers built a compression chamber to squeeze the crystals and added a fan to blow the chilled air into the area around the device. By repeatedly squeezing and un-squeezing the crystals, the researchers found they functioned as a clean refrigerant. They acknowledge that more work is required due to the extreme amount of pressure needed to squeeze the crystals, making it an expensive way to cool a home.
Samantha L. Piper et al, Organic ionic plastic crystals having colossal barocaloric effects for sustainable refrigeration, Science (2025). DOI: 10.1126/science.adq8396
Josep-Lluís Tamarit et al, Compressed ionic plastic crystals are cool, Science (2025). DOI: 10.1126/science.adu3670
More than half of cancer patients in whom the cancer spreads beyond the primary site have lung metastases. What makes the lungs such a tempting place for cancer cells?
To find out, researchers investigated the gene expression in cells from aggressive lung metastases. They found evidence for an alternative translation program. Translation is the process that uses our genetic code as a blueprint to make proteins in cells. A change in the translational program results in a set of different proteins that allow cancer cells to grow easier in the lung environment
They found high levels of aspartate in the lungs of mice and patients with breast cancer compared to mice and patients without cancer, which suggests that aspartate may be important for lung metastasis.
Aspartate is an amino acid (a protein building block) that has very low concentrations in blood plasma but, surprisingly, very high concentrations in the lungs of mice with metastatic breast cancer.
Many proteins in our bodies can affect the translation process, among them the so-called initiation factors. One such initiation factor is eIF5A, which kickstarts translation. In the cells of cancer cells within lung metastases, the researchers found an activating modification to eIF5A called "hypusination," which was associated with higher cancer aggressiveness of lung metastases.
Aspartate has something to do with this. The researchers discovered that aspartate triggered this modification on eIF5A through an unexpected mechanism. Surprisingly, aspartate was not taken up by the cancer cells. Instead, it activated a cell surface protein called an NMDA receptor in cancer cells, leading to a signaling cascade that eventually triggered eIF5A hypusination.
This subsequently drives a translational program that enhances the ability of cancer cells to change their environment and make it more suitable for aggressive growth.
Looking at human lung tumor samples from patients with metastatic breast cancer, the scientists noted a similar translational program as in mice and an elevated expression of the NMDA receptor subunit that binds aspartate compared to metastases from other organs.
Ginevra Doglioni et al, Aspartate signalling drives lung metastasis via alternative translation, Nature (2025). DOI: 10.1038/s41586-024-08335-7
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!