SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 18 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Sport Science - your best bet to beat competition when used in a correct and legal way

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 20 hours ago. 16 Replies

How can you achieve these targets in sport: "Faster, Higher, Stronger"?Very often people in this part of the world wonder why some developed countries do very well in Olympics and other International…Continue

Effects of pregnant women smoking and drinking on their fetuses

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 21 hours ago. 6 Replies

                                     Ladies and gentlemen say 'no' to this toxic empowerment. We had a discussion on reforms recently. During the process some people expressed the opinion that  women…Continue

Settled science works like magic!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply

Q:How much settled science is actually just bullshit?Krishna; “Settled science” is actually what this universe followed to come into existence and continue to run ( as principles and rules).If it is…Continue

Why do disinfectants only kill 99.9% of germs?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply

Have you ever wondered why most disinfectants indicate they kill 99.9% or 99.99% of germs, but never promise to wipe out all of them? Perhaps the thought has crossed your mind mid-way through…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on October 8, 2024 at 12:34pm

After injury,  comb jellies can fuse to become one!

Researchers reporting in the journal Current Biology on October 7 have made the surprising discovery that one species of comb jelly (Mnemiopsis leidyi) can fuse, such that two individuals readily turn into one following an injury. Afterwards, they rapidly synchronize their muscle contractions and merge digestive tracts to share food.

These  findings suggest that ctenophores may lack a system for allorecognition, which is the ability to distinguish between self and others.

Additionally, the data imply that two separate individuals can rapidly merge their nervous systems and share action potentials.

Researchers made the observation after keeping a population of the comb jellies in a seawater tank in the lab. They noticed an unusually large individual that seemed to have two backends and two sensory structures known as apical organs instead of one. They wondered if this unusual individual arose from the fusion of two injured jellies.

To find out, they removed partial lobes from other individuals and placed them close together in pairs. It turned out that, nine out of 10 times, it worked. The injured individuals became one, surviving for at least three weeks.

Further study showed that after a single night, the two original individuals seamlessly became one with no apparent separation between them. When the researchers poked at one lobe, the whole fused body reacted with a prominent startle response, suggesting that their nervous systems were also fully fused.

Mechanical stimulation applied to one side of the fused ctenophore resulted in a synchronized muscle contraction on the other side

Part 1

Comment by Dr. Krishna Kumari Challa on October 8, 2024 at 12:25pm

They found that the δ1 tail interacts more extensively with the main part of the protein, leading to greater self-inhibition compared to δ2. This means that δ1 is more tightly regulated by its tail than δ2. When these sites are mutated or removed, δ1 becomes more active, which leads to changes in circadian rhythms. In contrast, δ2 does not have the same regulatory effect from its tail region.
This discovery highlights how a small part of CK1δ can greatly influence its overall activity. This self-regulation is vital for keeping CK1δ activity balanced, which, in turn, helps regulate our circadian rhythms.

The study also addressed the wider implications of these findings. CK1δ plays a role in several important processes beyond circadian rhythms, including cell division, cancer development, and certain neurodegenerative diseases. By better understanding how CK1δ's activity is regulated, scientists could open new avenues for treating not just circadian rhythm disorders but also a range of conditions.

Rachel L. Harold et al, Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein kinase 1, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2415567121

Part 2

**

Comment by Dr. Krishna Kumari Challa on October 8, 2024 at 12:24pm

End of Jetlag: Scientists discover secret to regulating our body clock

Scientists have discovered a revolutionary way to put an end to jet lag by uncovering the secret at the tail end of Casein Kinase 1 delta (CK1δ), a protein that regulates our body clock. This breakthrough, achieved by researchers  offers a new approach to adjusting our circadian rhythms, the natural 24-hour cycles that influence sleep-wake patterns and overall daily functions.

Published in the journal Proceedings of the National Academy of Sciences (PNAS), their findings could pave the way for new approaches to treating disorders related to the body clock.

CK1δ regulates circadian rhythms by tagging other proteins involved in our biological clock to fine-tune the timing of these rhythms. In addition to modifying other proteins, CK1δ itself can be tagged, thereby altering its own ability to regulate the proteins involved in running the body's internal clock.

Previous research identified two distinct versions of CK1δ, known as isoforms δ1 and δ2, which vary by just 16 building blocks or amino acids right at the end of the protein in a part called the C-terminal tail. Yet these small differences significantly impact CK1δ's function. While it was known that when these proteins are tagged, their ability to regulate the body clock decreases, no one knew exactly how this happened.

Using advanced spectroscopy and spectrometry techniques to zoom in on the tails, the researchers found that how the proteins are tagged is determined by their distinct tail sequences.

The findings pinpoint to three specific sites on CK1δ's tail where phosphate groups can attach, and these sites are crucial for controlling the protein's activity. When these spots get tagged with a phosphate group, CK1δ becomes less active, which means it doesn't influence our circadian rhythms as effectively. Using high-resolution analysis, we were able to pinpoint the exact sites involved .

Part 1

Comment by Dr. Krishna Kumari Challa on October 8, 2024 at 12:17pm

Such editing, the team notes, is particularly challenging due to issues with delocalization—prior attempts have involved applying high temperatures or radiation. Neither approach has been found to be suitable.

In this new approach, the team used light as a photocatalyst for activating a furan ring. The technique can be used to carry out single electron oxidation on a furan, resulting in radicalization.

The approach, they note, allows for a facile reaction that is susceptible to the addition of an amine. That leads to a cascade of electron and proton transfer between the product and the photocatalyst, resulting in the creation of a ring aldehyde intermediate.

Donghyeon Kim et al, Photocatalytic furan-to-pyrrole conversion, Science (2024). DOI: 10.1126/science.adq6245

Ellie F. Plachinski et al, Single-atom editing with light, Science (2024). DOI: 10.1126/science.ads2595

Comment by Dr. Krishna Kumari Challa on October 8, 2024 at 12:17pm

Chemists use light to replace an oxygen atom with a nitrogen atom in a molecule

A team of chemists  has succeeded in pulling an oxygen atom from a molecule and replacing it with a nitrogen atom. In their study, published in the journal Science, the group used photocatalysis to edit a furan in their lab.

Prior research has shown that some complex molecules can be edited using chemical reactions, but they are few and far between. So chemists must synthesize molecules from scratch when they want to change a small part of a molecule, or even just one atom, for testing.

Such work has shown that even minor changes can have a major impact - changing a single atom in a heterocycle can have a profound impact on the efficacy of a drug. Chemists have been looking for more efficient ways to edit molecules—or more specifically, to remove a single atom and replace it with another.

In this new study, the research team developed a technique they describe as a pencil-and-eraser technique in which one atom is erased and another penciled in.
The researchers were inspired by a paper written by chemists Axel Couture and Alain Lablache-Combier in 1971, in which they used ultraviolet light to convert a furan to a N-propylpyrrole as a way of improving yield. They used ultraviolet light to swap an oxygen atom in a furan with a nitrogen atom.
Part 1
Comment by Dr. Krishna Kumari Challa on October 7, 2024 at 9:45am

47 tigers dead in Vietnam zoos due to bird flu

Forty-seven tigers, three lions and a panther have died in zoos in south Vietnam due to the H5N1 bird flu virus, state media reported recently.

The deaths occurred in August and September at the private My Quynh safari park in Long An province and the Vuon Xoai zoo in Dong Nai, near Ho Chi Minh City, the official Vietnam News Agency (VNA) reported.

According to test results from the National Center for Animal Health Diagnosis, the animals died "because of H5N1 type A virus", VNA said.

No zoo staff members in close contact with the animals had experienced respiratory symptoms, the VNA report added.

Education for Nature Vietnam (ENV), an NGO that focuses on , said there were a total of 385  living in captivity in Vietnam at the end of 2023.

About 310 are kept at 16 privately owned farms and zoos, while the rest are in state-owned facilities.

The World Health Organization (WHO) says that since 2022, there have been increasing reports of deadly outbreaks among mammals caused by , including H5N1.

It also says H5N1 infections can range from mild to severe in humans, and in some cases can even be fatal.

Vietnam notified the WHO about a human fatality from the virus in March.

In 2004, dozens of tigers died from bird flu or were culled at the world's largest breeding farm in Thailand.

Source: News agencies

Comment by Dr. Krishna Kumari Challa on October 7, 2024 at 9:43am

How a bacterium becomes a permanent resident in a fungus

Comment by Dr. Krishna Kumari Challa on October 7, 2024 at 9:41am

When the researchers allowed the spores with the resident bacteria to germinate, they found that they germinated less frequently and that the young fungi grew more slowly than without them. The endosymbiosis initially lowered the general fitness of the affected fungi.
The researchers continued the experiment over several generations of fungi, deliberately selecting those fungi whose spores contained bacteria. This enabled the fungus to recover and produce more inhabited but viable spores. As the researchers were able to show with genetic analyses, the fungus changed during this experiment and adapted to its resident.
The researchers also found that the resident, together with its host, produced biologically active molecules that could help the host obtain nutrients and defend itself against predators such as nematodes or amoebae.

The initial disadvantage can thus become an advantage.

In their study, the researchers show how fragile early endosymbiotic systems are. The fact that the host's fitness initially declines could mean the early demise of such a system under natural conditions.
For new endosymbioses to arise and stabilize, there needs to be an advantage to living together.
The prerequisite for this is that the prospective resident brings with it properties that favor endosymbiosis. For the host, it is an opportunity to acquire new characteristics in one swoop by incorporating another organism, even if it requires adaptations.

In evolution, endosymbioses have shown how successful they ultimately can become.

Julia Vorholt, Inducing novel endosymbioses by implanting bacteria in fungi, Nature (2024). DOI: 10.1038/s41586-024-08010-xwww.nature.com/articles/s41586-024-08010-x

Part 2

Comment by Dr. Krishna Kumari Challa on October 7, 2024 at 9:38am

Scientists inject bacteria into fungi to study endosymbiosis

Endosymbiosis is a fascinating biological phenomenon in which an organism lives inside another. Such an unusual relationship is often beneficial for both parties. Even in our bodies, we find remnants of such cohabitation: mitochondria evolved from an ancient endosymbiosis. Long ago, bacteria entered other cells and stayed. This coexistence laid the foundation for mitochondria and thus the cells of plants, animals, and fungi.

What is still poorly understood, however, is how an endosymbiosis as a lifestyle actually arises. A bacterium that more or less accidentally ends up in a completely different host cell generally has a hard time. It needs to survive, multiply, and be passed on to the next generation. Otherwise, it dies out. And to not harm the host, it must not claim too many nutrients for itself and grow too quickly. In other words, if the host and its resident cannot get along, the relationship ends.

To study the beginnings of such a special relationship between two organisms, a team of researchers initiated such partnerships in the laboratory. The scientists observed what exactly happens at the beginning of a possible endosymbiosis. They have just published their study in the scientific journal Nature.

Researchers first developed a method to inject bacteria into cells of the fungus Rhizopus microsporus without destroying them. They used E. coli bacteria on the one hand and bacteria of the genus Mycetohabitans on the other. The latter are natural endosymbionts of another Rhizopus fungus. For the experiment, however, the researchers used a strain that does not form an endosymbiosis in nature. They then observed what happened to the enforced cohabitation under the microscope.

After the injection of the E. coli bacteria, both the fungus and the bacteria continued to grow, the latter eventually so rapidly that the fungus mounted an immune response against the bacteria. The fungus protected itself from the bacteria by encapsulating them. This prevented the bacteria from being passed on to the next generation of fungi.

This was not the case with the injected Mycetohabitans bacteria: While the fungus was forming spores, some of the bacteria managed to get into them and thus were passed on to the next generation. The fact that the bacteria are actually transmitted to the next generation of fungi via the spores was a breakthrough in this research.

Part 1

Comment by Dr. Krishna Kumari Challa on October 7, 2024 at 9:27am

Some researchers are working on this problem.

They are exploring advanced positioning technologies to enhance navigation accuracy and reliability. The research covers multiple areas, including the development of a precise ultra-wideband (UWB) system for dense, indoor environments, which is also known as "the indoor GPS," improvements in outdoor vehicular positioning using GNSS, and a novel LEO satellite-based positioning method that addresses many of the limitations of current GNSS systems. Elsanhoury's work involved extensive testing and simulations, demonstrating significant advancements in both indoor and outdoor positioning accuracy.

The research focuses on two distinct technologies: UWB systems for precise indoor positioning and LEO satellites for enhanced outdoor navigation. The UWB technology significantly enhances positioning accuracy within dense indoor settings, while the LEO satellite-based system addresses the limitations of traditional GNSS. 

For outdoor environments, the research work introduces a novel LEO satellite-based positioning method. This approach addresses the impact of GPS jamming and interference, which is a persistent challenge in Finland and other regions. The LEO satellite system employs multiple signal beams to enhance navigation reliability, ensuring accurate positioning even when traditional GNSS systems are compromised. The simulation results conducted were very promising as the new LEO-based method outperformed GNSS amid challenging road conditions, with improved LEO accuracy of 9.15 meters compared to GNSS accuracy of 26.6 meters.

The new, patented method has received international endorsement and recognition.

The development of advanced UWB systems is crucial for navigating complex indoor spaces. The technology has shown resilience in dense industrial environments, also overcoming the common wireless communication impairments. Integrating UWB with other assisting technologies such as inertial motion sensors can lead to more precise location information, and solving challenges posed by traditional systems in confined areas.

 Elsanhoury, Mahmoud. Towards Precision Positioning for Smart Logistics Using Ultra Wide-Band Systems and LEO Satellite-Based Technologies, (2024). Doctoral dissertation. University of Vaasa, urn.fi/URN:ISBN:978-952-395-146-4

Part 2

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service