Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 18 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 20 hours ago. 16 Replies 0 Likes
How can you achieve these targets in sport: "Faster, Higher, Stronger"?Very often people in this part of the world wonder why some developed countries do very well in Olympics and other International…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 21 hours ago. 6 Replies 1 Like
Ladies and gentlemen say 'no' to this toxic empowerment. We had a discussion on reforms recently. During the process some people expressed the opinion that women…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
Q:How much settled science is actually just bullshit?Krishna; “Settled science” is actually what this universe followed to come into existence and continue to run ( as principles and rules).If it is…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Have you ever wondered why most disinfectants indicate they kill 99.9% or 99.99% of germs, but never promise to wipe out all of them? Perhaps the thought has crossed your mind mid-way through…Continue
Comment
Increasingly occurring GPS jamming in some places disrupts daily civilian activities, posing major navigational challenges. A new patented method using low Earth orbit (LEO) satellites and massive multiple input multiple output (MIMO) antennas addresses these location vulnerability issues, presenting means for precise navigation even where traditional global navigation satellite systems (GNSS) fail.
Part 1
Most people spend their time indoors and the air we breathe at work, school or home affects our overall health and well-being.
Many sources can generate very toxic materials, like building materials and carpets. We breathe out and breathe in, and that builds up carbon dioxide levels. Also, there are risks from cooking and infiltration from the outdoors.
Most air purification systems, however, are expensive, cumbersome and require frequent cleaning or filter replacement to function at optimum levels.
So researchers are repurposing their research about bacteria-powered biobatteries—ingestible and otherwise—into a new idea for artificial plants that can feed off carbon dioxide, give off oxygen and even generate a little power.
They outline their results in a paper recently published in the journal Advanced Sustainable Systems.
Using five biological solar cells and their photosynthetic bacteria, researchers created an artificial leaf "for fun," then realized the concept has wider implications. They built the first plant with five leaves, then tested its carbon dioxide capture rates and oxygen generation capability.
Although power generation of around 140 microwatts is a secondary benefit, they hope to improve the technology to achieve a minimum output of more than 1 milliwatt. They also want to integrate an energy storage system, such as lithium-ion batteries or supercapacitors.
Other upgrades could include using multiple bacteria species to ensure long-term viability and developing ways to minimize maintenance, such as water and nutrient delivery systems.
With some fine-tuning, these air purifying artificial plants could be a part of every household.
Maryam Rezaie et al, Cyanobacterial Artificial Plants for Enhanced Indoor Carbon Capture and Utilization, Advanced Sustainable Systems (2024). DOI: 10.1002/adsu.202400401
If you sweat excessively, you're likely to have sensitive skin as well, with new research confirming the two go hand-in-hand.
It uncovered a significant link excessive sweating -- a condition known as primary hyperhidrosis -- and sensitive skin.
People with primary hyperhidrosis sweat four times more than needed to cool the body -- even when they're not exposed to high temperatures or exercising. The condition affects specific areas such as the hands, feet, face and armpits.
People with sensitive skin often experience itching, burning and tightness when exposed to heat, sweat, skincare products and stress.
Researchers found that folks with hyperhydrosis are more likely than most people to have sensitive skin. Sensitivity often goes beyond areas that sweat excessively, showing that perspiration isn't the cause of their skin sensitivity.
Someone with primary hyperhidrosis is more likely to have sensitive skin than the general public, even in areas where there is no excessive sweating.
The study also showed that:
Erika T. McCormick MD et al. Primary Hyperhidrosis and Sensitive Skin: Exploring the Link with Predictive Machine Learning-Based Classification Models. Journal of the Drugs and Dermatology. (2024) DOI: 10.36849/JDD.8461
Plants rely on fine-tuned genetic processes to pass down accurate copies of chromosomes to future generations. These processes sometimes involve billions of moving parts. Even the tiniest disruption can have a cascading effect. So, for plants like Arabidopsis thaliana, it's good to have a backup plan.
Chromosomes have to be accurately partitioned every time a cell divides.
For that to happen, each chromosome has a centromere. In plants, centromeres control chromosome partitioning with the help of a molecule called DDM1.
When humans lose their version of DDM1, centromeres can't divide evenly. This causes a severe genetic condition called ICF syndrome. But if the molecule is so important, why isn't Arabidopsis affected when DDM1 is lost?
Scientists found that in yeast, centromere function is controlled by small RNAs. That process is called RNAi. Plants actually have both DDM1 and RNAi.
When they isolated these two in Arabidopsis to see what happens , the plants looked really horrible.
When the team looked closer, they found that a single transposon inside chromosome 5 was responsible for the defects. Transposons move around the genome, switching genes on and off. In Arabidopsis, they trigger DDM1 or RNAi to help centromeres divide. But when DDM1 and RNAi are missing, the process is disrupted.
They found very few copies of this transposon anywhere else in the genome.
But the centromere of chromosome 5 was infested with these things.
The scientists developed molecules called short hairpin RNAs that target the transposons.
Those small RNAs make up for the loss of DDM1. They recognized every copy of the transposon in the centromere and, amazingly, restored centromere function. So now the plants were fertile again. They make seeds. They look much better.
Of course, it's not all about plants. In humans, uneven centromere division has been linked to conditions like ICF and early cancer progression.
Atsushi Shimada et al, Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs, Nature Plants (2024). DOI: 10.1038/s41477-024-01773-1
A team of scientists has solved the structure of a protein known as "LYCHOS," which can detect and regulate cell growth by sensing cholesterol levels in the body.
Human cells need cholesterol for healthy growth, but the way cells and cholesterol interact is a delicate balance. When cell growth becomes abnormal, it can quickly become a driving force behind many types of cancer, neurological disorders and other diseases.
In their article published in Nature, the research team used cryo‐electron microscopy (cryo‐EM) to, for the first time, determine the 3D structure of LYCHOS and show that it is a unique hybrid of a cell transporter commonly found in plants (and not humans), and a G protein-coupled receptor (GPCR).
The GPCR and plant-like transporter work together to sense cholesterol and regulate cell growth, thus making LYCHOS an exciting new drug target for diseases perpetuated by abnormal cell growth that can lead to the formation of cancerous tumors and neurological dysfunction.
Their cryo-EM studies have revealed that human LYCHOS is a hybrid of a GPCR and a 'PIN-FORMED' (PIN) transporter, typically associated with the plant kingdom and not previously thought to exist in humans.
Much like the process whereby plants move their stems and leaves toward light to receive the maximum energy for photosynthesis, the LYCHOS plant-like transporter helps human cells sense when there's enough cholesterol to start growing.
Charles Bayly-Jones et al, LYCHOS is a human hybrid of a plant-like PIN transporter and a GPCR, Nature (2024). DOI: 10.1038/s41586-024-08012-9
The researchers wanted to know if the same was true for humans. To find out, they first conducted animal experiments to find the right ingredients that would stimulate the gut biome and then made a supplement with the best of them. They then gave the supplement they had developed to 64 children suffering from severe malnutrition in several hospitals in Bangladesh.
Another 64 children also suffering from severe malnutrition were given RUFs. All the children in the study were assessed over the following three months. The research team found that those children receiving the biome-enhancing supplements gained weight faster than the children given RUFs.
They also found that those children receiving the new supplements had higher concentrations of the types of proteins in their blood that are needed for the proper growth of bones, muscles, and nerve cells in the brain.
The researchers conclude by suggesting that giving malnourished children biome-enhancing food can not only speed up recovery time but also prevent stunted growth.
Steven J. Hartman et al, A microbiome-directed therapeutic food for children recovering from severe acute malnutrition, Science Translational Medicine (2024). DOI: 10.1126/scitranslmed.adn2366
Part 2
A team of biologists, nutritionists and gut biome specialists has found via a trial run at several hospitals that giving children suffering from severe malnutrition a microbiome-based food helps them recover faster than giving them ready-to-use therapeutic or supplementary foods (RUFs).
For many years, the standard of care for children suffering from severe acute malnutrition has been feeding them RUFs, which are generally made by mixing peanuts, oil, butter, and sugar into a quantity of powdered milk. Such a mix provides a lot of calories in a hurry, helping children who are starving recover as quickly as possible.
In this new study, published in Science Translational Medicine, the researchers have found that a different kind of food might be a better option.
Several years ago, researchers discovered that when children experience a severe lack of food, in addition to losing weight and an ability to ward off diseases, their intestinal biome becomes less diverse—without food to process, gut bacteria levels dwindle. Experiments with mice showed that those who were malnourished who were given food designed to ramp up the biome gained weight faster than those who were placed on just a high-calorie diet.
Part 1
Using the data, the scientists created a timeline of what happened in the seconds and minutes after impact.
After the impact and the central uplift forming, the soft sediments surrounding the crater flowed inwards towards the evacuated crater floor, creating a visible 'brim.'
The earthquake shaking caused by the impact appears to have liquefied the sediments below the seabed across the entire plateau, causing faults to form below the seabed.
The impact was also associated with large landslides as the plateau margin collapsed below the ocean.
As well as this, there is evidence for a train of tsunami waves going away from, then back towards the crater, with large resurge scars preserving evidence of this catastrophic event.
Humans have never witnessed an asteroid of this size crashing into Earth.
Uisdean Nicholson et al, 3D anatomy of the Cretaceous–Paleogene age Nadir Crater, Communications Earth & Environment (2024). DOI: 10.1038/s43247-024-01700-4
Part 2
New images of an asteroid impact crater buried deep below the floor of the Atlantic Ocean have been published recently by researchers.
The images confirm the 9km Nadir Crater, located 300m under the floor of the Atlantic Ocean, was caused by an asteroid smashing into Earth at the end of the Cretaceous period around 66 million years ago. That's the same age as the dinosaur-killing 200 km wide, Chicxulub impact crater in Mexico.
The images have helped the researchers determine what happened in the minutes following impact: The formation of an initial bowl-shaped crater, rocks turned to a fluid-like state and flowing upwards to the crater floor, the creation of a damage zone covering thousands of square kilometers beyond the crater, and an 800-meter-plus high tsunami that would have traveled across the Atlantic ocean.
The data revealed a depression more than 8.5km wide, which could be an asteroid impact crater. The data suggested it was from an asteroid hundreds of meters wide hitting the planet around 66 million years ago.
High-resolution, 3D seismic data was captured by TGS, a global geophysical company and shared with geologists. The data proves that an asteroid caused the Nadir Crater.
Craters on the surface are usually heavily eroded and we can only see what is exposed, whereas craters on other planetary bodies usually only show the surface expression.
These data allow us to image this fully in three dimensions and peel back the layers of sedimentary rock to look at the crater at all levels.
The new images paint a picture of the catastrophic event.
The asteroid was 450–500m wide, because of the larger crater size as shown by the 3D data.
Researchers can also tell it came from about 20–40 degrees to the northeast, because of spiraling thrust-generated ridges surrounding the crater's central peak—those are only formed following a low-angle oblique impact.
It would have hit Earth at about 20 km per second, or 72,000 km per hour.
Part 1
Plastic pollution is creating a ‘plastisphere’: a widespread habitat that includes pathogenic viruses and antimicrobial-resistant bacteria, a group of environmental researchers highlights. The problem has no easy fix, but the ecosystems of the plastisphere must be thoroughly studied, with..., if we’re to mitigate the risks posed by the pathogens lurking within.
© 2025 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!