Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Yes, if not done properly, says new research workFecal microbiota transplants (FMT) have been touted as a potential treatment for a variety of conditions, from inflammatory bowel diseases, obesity,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 4 Replies 0 Likes
Interactive science series“Science literacy is a vaccine against the charlatans of the world that would exploit your ignorance.” —…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 3 Replies 0 Likes
It seems "people are easily persuaded by things they hear more often. “The mere repetition of a myth leads people to believe it to be more true".Unfortunately, our brains don’t remember myths in a…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 13 Replies 0 Likes
Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps. "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue
Comment
Copper is an essential element of life from bacteria and fungi to plants and animals. In humans, it binds to enzymes to help blood clot, hormones mature, and cells process energy. But too much copper kills cells—and now scientists have figured out how.
Copper is a double-edged sword: too little and cells can't survive. But too much, and cells die.
Researchers have uncovered a new form of cell death that is induced by copper.
found that copper binds to specialized proteins, causing them to form harmful clumps, and also interferes with the function of other essential proteins. Cells go into a state of toxic stress and ultimately die.
By shedding light on key components of this process, the research also identified which cells are particularly vulnerable to copper-induced death. The findings could help researchers better understand diseases in which copper is dysregulated, and could even inform the development of new cancer treatments.
Peter Tsvetkov et al, Copper induces cell death by targeting lipoylated TCA cycle proteins, Science (2022). DOI: 10.1126/science.abf0529
https://phys.org/news/2022-03-scientists-kind-cell-death-linked.htm...
Researchers have discovered a new form of ice, redefining the properties of water at high pressures.
Solid water, or ice, is like many other materials in that it can form different solid materials based on variable temperature and pressure conditions, like carbon forming diamond or graphite. However, water is exceptional in this aspect as there are at least 20 solid forms of ice known to us.
A team of scientists pioneered a new method for measuring the properties of water under high pressure. The water sample was first squeezed between the tips of two opposite-facing diamonds—freezing into several jumbled ice crystals. The ice was then subjected to a laser-heating technique that temporarily melted it before it quickly re-formed into a powder-like collection of tiny crystals.
By incrementally raising the pressure, and periodically blasting it with the laser beam, the team observed the water ice make the transition from a known cubic phase, Ice-VII, to the newly discovered intermediate, and tetragonal, phase, Ice-VIIt, before settling into another known phase, Ice-X.
the transition to Ice-X, when water stiffens aggressively, occurs at much lower pressures than previously thought.
While it's unlikely we'll find this new phase of ice anywhere on the surface of Earth, it is likely a common ingredient within the mantle of Earth as well as in large moons and water-rich planets outside of our solar system.
Zachary M. Grande et al, Pressure-driven symmetry transitions in dense H2O ice, Physical Review B (2022). DOI: 10.1103/PhysRevB.105.104109
https://phys.org/news/2022-03-ice.html?utm_source=nwletter&utm_...
Once the cells had settled in, the researchers induced several models of acute inflammation, including stroke and chemically induced meningoencephalitis.
They found that the skull contributed significantly more neutrophils to the brain in the event of stroke and meningitis than the tibia. But that raised a new question – how were the neutrophils being delivered?
Unexpectedly scientists discovered tiny channels that connected the marrow directly with the outer lining of the brain!
Using organ-bath microscopy – which uses a chamber full of solution to maintain the integrity of the isolated tissue while it is being examined – the team imaged the inner surface of a mouse's skull. There, they found microscopic vascular channels directly connecting the skull marrow with the dura, the protective membrane that encases the brain.
https://www.nature.com/articles/s41593-018-0213-2
Part 2
Did you know you have tiny tunnels in your head? That's OK, no one else did either until recently! But that's exactly what a team of medical researchers confirmed in mice and humans in 2018 – tiny channels that connect skull bone marrow to the lining of the brain.
The research shows they may provide a direct route for immune cells to rush from the marrow into the brain in the event of damage.
Previously, scientists had thought immune cells were transported via the bloodstream from other parts of the body to deal with brain inflammation following a stroke, injury, or brain disorder.
This discovery suggests these cells have had a shortcut all along.
The tiny tunnels were uncovered when a team of researchers set out to learn whether immune cells delivered to the brain following a stroke or meningitis originated from the skull, or the larger of the two bones in the shin – the tibia.
The specific immune cells they followed were neutrophils, the "first responders" of the immune squad. When something goes awry, these are among the first cells the body sends to the site to help mitigate whatever is causing the inflammation.
The team developed a technique to tag cells with fluorescent membrane dyes that act as cell trackers. They treated these cells with the dyes, and injected them into bone marrow sites in mice. Red-tagged cells were injected into the skull, and green-tagged cells into the tibia.
Part 1
Moving forward, the researchers aim to identify the specific compounds in the neem bark that are responsible for the antiviral effects. That could help guide the development of neem-based antiviral therapies and determining the dosage requirements for treating coronavirus infections.
“The antiviral properties of neem bark extract offer a new premise for restricting viral spread, replication and fusion. Our studies can guide new antiviral therapeutic efforts to combat the ongoing COVID-19 pandemic and hold promise for treating the future emergence of new coronavirus strains,” the authors wrote.
The article can be found at: Sarkar et al. (2022) Azadirachta indica A. Juss bark extract and it....
Part 3
**
Computer modeling done by the researchers revealed that the neem bark extract can target a wide range of viral proteins. Certain components can bind to various regions on the SARS-CoV-2 spike protein, which is responsible for enabling viral entry into human cells. The binding of neem compounds stabilizes the spike protein and effectively acts as a block on key regions that typically bind with the host cell. That prevents the spike proteins from fusing with the host cell.
Because the virus is no longer able to latch onto the host cells, it cannot access the host’s genetic machinery needed for its replication. The viral replication typically correlates with disease progression and severity, even allowing the virus to spread to other cells and organs in the body. Accordingly, cutting off this access point can prevent SARS-CoV-2 from severely damaging the body.
In the lab, the researchers introduced the bark extracts to samples of human lung cells infected with SARS-CoV-2. They found that the extracts inhibited viral infection and replication in the cells, primarily by reducing the expression of genes that code for the viral envelope. The envelope is an important outer layer that protects the virus’ genetic material and helps the virus move through the cell membrane to enter the cell.
By blocking entry and reducing viral replication, the extract also relieved other complications that COVID-19 causes, including inflammation in the brain and hepatitis in mice models.
Overall, the neem compounds showed potential as antiviral agents both for protecting against infection and mitigating disease severity after infection. Moreover, the researchers highlighted that the multi-targeted nature of its effects—particularly its capacity to bind to several spike regions—may make the extract effective against new variants that carry mutations in their spike protein.
part 2
Extract from the bark of the Neem tree may help reduce the spread of coronavirus, an India-US research team reported.
xtract from the bark of a neem tree has shown antiviral effects against SARS-CoV-2, the virus that causes COVID-19, according to a recently published study in Virology. The India-US research team hopes that the findings can support the development of new medications to lower the risk of serious illness and curb the spread of coronavirus infections.
The neem tree (Azadirachta indica) is a big-leaf mahogany indigenous to India. The tree’s various components have been reported to have various medicinal properties against certain virus, bacteria and parasites. The extracts derived from the bark in particular have beneficial effects against malaria, stomach and intestinal ulcers, and skin disorders, laboratory studies have shown.
Given the bark extract’s history in addressing diseases, researchers from the Indian Institute of Science Education and Research Kolkata and the University of Colorado in the US investigated whether neem extracts would similarly help suppress COVID-19 infections. The team combined different methods to comprehensively examine the extract’s effects against coronaviruses.
Part 1
Scientists have trained a colony of ants to sniff out cancerous cells with surprising accuracy.
Ants are able to detect cancer cells by sniffing out their unique odour, a new study has shown.
Individual ants only need a few training sessions to learn the scent of cancer... which researchers said make them more “feasible, fast and less laborious” than using other animals.
While this is the first study of its kind, researchers said it shows the potential of ants to act as a cancer bio-detector.
When cancerous cells grow they produce specific compounds, which can be detected using high-tech equipment or picked up by animals with especially sensitive noses. Dogs can smell cancer, as has been shown in recent research – one study found our canine companions could sniff out lung cancer with nearly 97 per cent accuracy.
However, training dogs is a lengthy and costly process. So, researchers at universities in France decided to investigate using different animals to detect cancer’s odour. Insects, being easily reared and inexpensive, seemed like a good choice. Their olfactory system is often crucial to their survival, leading them towards edible plants and willing mates.
https://www.cell.com/iscience/fulltext/S2589-0042(22)00229-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2589004222002292%3Fshowall%3Dtrue
Cells communicate with one another in the language of chemistry, but those from different kingdoms, such as bacteria and yeast, speak dialects virtually unintelligible to the other. By learning how microbes "talk," researchers hope to one day manipulate their behavior to protect against disease, for example. Efforts like this are in their infancy, but in a new study in ACS' Nano Letters, researchers describe the first system that enables two unrelated organisms to communicate.
In nature, many cells send and receive chemical signals. This strategy allows bacteria to regulate their behavior, fungi to mate and human cells to notify each other of threats. This type of chemical communication has inspired researchers to devise their own means to join these conversations so they can give cells instructions. While some studies have examined micro- or nano-scale particles that communicate with one type of cell, the use of particles to enable communication between two different types of cells has not been explored. Antoni Llopis-Lorente, Ramón Martínez-Máñez and colleagues wanted to create a nano-scale translating device so they could send a chemical signal between members of two different kingdoms of life—something that rarely happens in the natural world.
The team built the nanotranslator from silica nanoparticles loaded with two molecules: one that reacts with glucose, and another molecule called phleomycin. The signaling system they constructed had two steps, which they tested independently then put together. First, the researchers initiated a signal by exposing E. coli to lactose. The bacteria converted the lactose into glucose, which reacted with the nanotranslator. Next, this device released phleomycin, another messenger compound. The yeast Saccharomyces cerevisiae detected the phleomycin and responded by fluorescing, something they had been genetically engineered to do. The researchers envision many possible applications for similar nanotranslator-based communication systems. For example, these devices could be used to tell cells to turn off certain processes and to switch on others, or to alter the activity of human immune cells to treat disease, the researchers say.
Beatriz de Luis et al, Nanoprogrammed Cross-Kingdom Communication Between Living Microorganisms Nano Letters (2022). DOI: 10.1021/acs.nanolett.1c02435. doi.org/10.1021/acs.nanolett.1c02435
https://phys.org/news/2022-03-bacteria-yeast-nanotranslator.html?ut...
**
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!