Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 4 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 4 Replies 0 Likes
Oh, we have been celebrating Deepavali with fun and happiness minus fireworks for the past several years!Before somebody asks me 'How can there be fun without fireworks?', I want to add I had fun…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 14 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 2 Replies 0 Likes
Q: Why do bats spread so many diseases? Let us start with positive things. In reality, bats are truly remarkable.Bats support our agricultural industries as vital members of food webs. Bats…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Oct 31. 1 Reply 0 Likes
Mathematical proof debunks the idea that the universe is a computer simulationDidn’t know how to disprove this, but I always wanted to: It's a plot device beloved by science fiction - our entire…Continue
Comment
In the battle of the sexes, women beat men in their ability to recover from kidney injury. Scientists now know why.
Females, it turns out, have an advantage at the molecular level that protects them from a form of cell death that occurs in injured kidneys. This protection could be exploited as a potential therapeutic.
It is a form of cell death called ferroptosis, which 's only recently discovered. This form of cell death is dependent on iron and oxidative stress. It has been identified as a key player in kidney diseases.
Using genetic and single-cell RNA transcriptomic analysis in mice, the researchers found that being female confers striking protection against ferroptosis through a particular pathway called nuclear factor erythroid 2–related factor 2, or NRF2.
In females, NRF2 is highly active, keeping cell death in check. In males, however, the sex hormone testosterone reduces the activity of NRF2, thus promoting ferroptosis and undermining cell resiliency in kidney injury.
Further experiments showed that chemically activating NRF2 protected male kidney cells from ferroptosis, demonstrating that NRF2 could be a potential therapeutic target to prevent failed renal repair after acute kidney injury.
Tomokazu Souma, Sex differences in resilience to ferroptosis underlie sexual dimorphism in kidney injury and repair, Cell Reports (2022). DOI: 10.1016/j.celrep.2022.111610. www.cell.com/cell-reports/full … 2211-1247(22)01479-6
First ever clinical trial of lab-grown red blood cell transfusion
Researchers are taking part in the world’s first clinical trial of red blood cells that have been grown in a laboratory for transfusion into another person.
Deadlier than COVID, or even rivalling cancer? Researchers have been increasingly attempting to calculate the effect climate change will have on health if the world does not act quickly to reduce carbon emissions.
The World Health Organization, which says climate change is the single biggest health threat facing humanity, has called for the issue to be "front and centre" in negotiations at the COP27 summit being held in Egypt.
But quantifying the overall impact is an extremely complicated task, experts told AFP, because global warming affects health in many different ways, from the immediate dangers of rising heat and extreme weather to longer-term food and water shortages, air pollution and disease.
The WHO estimates that climate change will cause 250,000 extra deaths a year from malnutrition, malaria, diarrhoea and heat stress between 2030 and 2050.That is widely thought to be a "massively conservative estimate" of the true toll, partly because it only comes from four sources. And Climate change is a threat multiplier.
As climate change worsens, we're going to see the biggest threats to human health increase.Nearly 70 percent of all deaths worldwide are from diseases that could be made worse by global warming, according to a report this year from the IPCC, the United Nations' panel of climate experts.
Another major health threat comes from food shortages. Nearly 100 million additional people faced severe food insecurity in 2020 compared to 1981-2010, according to a report last month from The Lancet Countdown, a leading effort to quantify climate change's impact on health.
Extreme drought has increased by nearly a third over the last 50 years, it added, putting hundreds of millions at risk of lacking access to fresh water.
And air pollution contributed to 3.3 million deaths in 2020, 1.2 million of which were directly related to fossil fuel emissions, the report found.
Researchers have also been sounding the alarm that warmer temperatures are pushing virus-carrying animals like mosquitoes into new areas, increasing the spread of existing diseases—and raising the risk of new ones jumping across to humans.
The likelihood of dengue transmission rose by 12 percent over the last 50 years, while warming temperatures extended malaria season in parts of Africa by 14 percent, The Lancet Countdown report said.
Projecting into the future, a new platform launched last week by the United Nations Development Programme and the Climate Impact Lab warned that global warming could become deadlier than cancer in some parts of the world.
Under the modelling research's worst-case scenario in which fossil fuel emissions are not rapidly scaled back, climate change could cause death rates to increase by 53 deaths per 100,000 people worldwide by 2100—around double the current rate for lung cancer.
For the current global population, that would mean 4.2 million additional deaths a year, more than the official toll from COVID-19 in 2021.
Climate change will influence every aspect of public health in the future.
Source: AFP
https://phys.org/news/2022-11-threat-climate-affects-health.html?ut...
Chemistry is increasingly making use of the trick plants can do with photosynthesis: driving chemical reactions that run poorly or do not occur spontaneously at all with light energy. This requires suitable photocatalysts that capture light energy and make it available for the reaction. In the journal Angewandte Chemie, a research team has now introduced layered core/shell quantum dots that efficiently drive challenging organic transformations. Their low toxicity is a particular advantage.
Quantum dots are finely dispersed nanoscopic crystals of inorganic semiconductors. They absorb strongly in an adjustable range of the spectrum and are easy to recycle. Until now, photocatalytic quantum dots have been based almost exclusively on the highly toxic elements cadmium and lead. This and their limited efficiency have been the main barriers to their broader use.
A research team has now introduced novel quantum dots with very low toxicity and very high performance. They are activated by commercially available blue LEDs—the UV light that is usually required is not needed. The secret to their success lies in their core/shell structure and the variable coatings that can be used to "store" the light energy.
The quantum dots are only a few nanometers wide. Their core consists of zinc selenide (ZnSe) and is surrounded by a thin shell made of zinc sulfide (ZnS). Blue light raises the zinc selenide to an excited state in which it can easily give up electrons. The shell prevents the electrons from immediately being captured by so-called defects. The team equipped the surface of the shell with special benzophenone ligands that "suck up" the electrons from the quantum dots, store them, and make them available for organic reactions. For example, the team was able to carry out reductive dehalogenations of aryl chlorides and additive-free polymerizations of acrylates—important reactions that run poorly or not at all by conventional photocatalysts. A second version was made by coating the surface with biphenyl ligands that can directly absorb energy from excited quantum dots. This brings them into a long-lived, highly energetic triplet state. The triplet energy "stored" in this way can be transferred to specific organic molecules, which then also enter a triplet state. In this state, they can undergo chemical reactions that are not possible in their ground state. As a demonstration, the team carried out [2+2] homo-cycloadditions of styrene and cycloadditions of carbonyls with alkenes. These produce four-membered rings (cyclobutanes or oxetanes, respectively), which are substances that are important starting materials in areas such as pharmaceutical development.
Chengming Nie et al, Low‐Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations, Angewandte Chemie International Edition (2022). DOI: 10.1002/anie.202213065
Chemistry is increasingly making use of the trick plants can do with photosynthesis: driving chemical reactions that run poorly or do not occur spontaneously at all with light energy. This requires suitable photocatalysts that capture light energy and make it available for the reaction. In the journal Angewandte Chemie, a Chinese research team has now introduced layered core/shell quantum dots that efficiently drive challenging organic transformations. Their low toxicity is a particular advantage.
A microscopic video shows a virus (purple track) as it finds its way to the surface of human intestinal cells (green).
Researchers have captured the first real-time footage of viruses on the move, right before they hijack a cell.
A small clinical trial has shown that CRISPR gene editing can alter immune cells so that they seek out an.... T cells, a type of white blood cell that patrols the body looking for errant cells, were modified to recognize the mutated proteins in tumours, which are different in every person. It is the first attempt to combine two hot areas of cancer research: gene editing to create personalized treatments, and the engineering of T cells to make them better at targeting tumours. “It is probably the most complicated therapy ever attempted in the clinic,” says study co-author Antoni Ribas, a cancer researcher and physician. “We’re trying to make an army out of a patient’s own T cells.”
Physicians have successfully treated a fetus with a devastating genetic disorder for the first time, and the child is now thriving as a toddler, a case study in the New England Journal of Medicine reports.
This treatment expands the repertoire of fetal therapies in a new direction. As new treatments become available for children with genetic conditions, researchers and doctors are developing protocols to apply them before birth.
The child's disorder, infantile-onset Pompe disease, is one of several lysosomal storage diseases that begin to cause severe damage to major organs, such as the heart, before birth. By initiating enzyme replacement therapy during fetal development, physicians aimed for better outcomes than are typical with post-birth treatment—outcomes that can include death in early childhood, very low muscle tone or ventilator dependency.
After six prenatal enzyme replacement treatments at The Ottawa Hospital, the child, Ayla, was born at term. She is receiving postnatal enzyme therapy at CHEO (a pediatric hospital and research center in Ottawa, Canada), and doing well at 16 months of age. She has normal cardiac and motor function and is meeting developmental milestones.
The successful treatment is a feat of collaboration between UCSF, where an ongoing clinical trial on the treatment is based; CHEO and The Ottawa Hospital, where the patient was diagnosed and treated; and Duke University, home to the world's top experts on Pompe disease.
Jennifer L. Cohen et al, In Utero Enzyme-Replacement Therapy for Infantile-Onset Pompe's Disease, New England Journal of Medicine (2022). 10.1056/NEJMoa2200587. www.nejm.org/doi/full/10.1056/NEJMoa2200587
A new study by scientists at the .NeuroRestore research center has identified the type of neuron that is activated and remodeled by spinal cord stimulation, allowing patients to stand up, walk and rebuild their muscles – thus improving their quality of life. This discovery, made in nine patients, marks a fundamental, clinical breakthrough. The study was published in Nature on Nov 9, 2022.
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!