Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 12 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 15 hours ago. 1 Reply 0 Likes
Yes, if not done properly, says new research workFecal microbiota transplants (FMT) have been touted as a potential treatment for a variety of conditions, from inflammatory bowel diseases, obesity,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 4 Replies 0 Likes
Interactive science series“Science literacy is a vaccine against the charlatans of the world that would exploit your ignorance.” —…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 3 Replies 0 Likes
It seems "people are easily persuaded by things they hear more often. “The mere repetition of a myth leads people to believe it to be more true".Unfortunately, our brains don’t remember myths in a…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 13 Replies 0 Likes
Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps. "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue
Comment
Researchers from the University of Oxford's Big Data Institute have taken a major step towards mapping the entirety of genetic relationships among humans: a single genealogy that traces the ancestry of all of us. The study has been published recently in Science.
The past two decades have seen extraordinary advancements in human genetic research, generating genomic data for hundreds of thousands of individuals, including from thousands of prehistoric people. This raises the exciting possibility of tracing the origins of human genetic diversity to produce a complete map of how individuals across the world are related to each other.
Until now, the main challenges to this vision were working out a way to combine genome sequences from many different databases and developing algorithms to handle data of this size. However, a new method published today by researchers from the University of Oxford's Big Data Institute can easily combine data from multiple sources and scale to accommodate millions of genome sequences.
This genealogy allows us to see how every person's genetic sequence relates to every other, along all the points of the genome. Since individual genomic regions are only inherited from one parent, either the mother or the father, the ancestry of each point on the genome can be thought of as a tree. The set of trees, known as a "tree sequence" or "ancestral recombination graph," links genetic regions back through time to ancestors where the genetic variation first appeared.
Part 1
Stem cells have the superpower of turning into any other kind of cell – a superpower that some animals use to regrow limbs; for medicine, they yield the potential to help us repair parts of the human body that have been damaged by injury or disease. Carrying out those repairs requires the ability to manipulate stem cells on demand, and a new study outlines an innovative way of doing just that: by using high-frequency sound waves to turn stem cells into bone cells in as little as five days, with 10 minutes of stimulating treatment per day. Further down the line, the researchers hope this technique – which has several advantages over the processes that are in use today – could be used to regrow bone that has been lost to cancer or other types of degenerative disease.
The sound waves cut the treatment time usually required to get stem cells to begin to turn into bone cells by several days. This method also doesn't require any special 'bone-inducing' drugs and it's very easy to apply to the stem cells.
The approach builds on years of work into modifying materials with sound waves above frequencies of 10 MHz, which are much higher frequencies than researchers have previously used in these kinds of experiments. Here, a microchip was used to transform stem cells put in silicon oil and placed on a culture plate. The researchers have shown that it works with multiple types of stem cells, including fat-derived stem cells that aren't as painful to pull out of the body.
Researchers can now use the sound waves to apply just the right amount of pressure in the right places to the stem cells, to trigger the change process.
https://onlinelibrary.wiley.com/doi/10.1002/smll.202106823
https://www.sciencealert.com/sonic-breakthrough-uses-sound-waves-to...
For the first time, researchers have demonstrated an artificial organic neuron, a nerve cell, that can be integrated with a living plant and an artificial organic synapse. Both the neuron and the synapse are made from printed organic electrochemical transistors.
On connecting to the carnivorous Venus flytrap, the electrical pulses from the artificial nerve cell can cause the plant's leaves to close, although no fly has entered the trap. Organic semiconductors can conduct both electrons and ions, thus helping mimic the ion-based mechanism of pulse (action potential) generation in plants. In this case, the small electric pulse of less than 0.6 V can induce action potentials in the plant, which in turn causes the leaves to close.
Simone Fabiano, Organic electrochemical neurons and synapses with ion mediated spiking, Nature Communications (2022). DOI: 10.1038/s41467-022-28483-6. www.nature.com/articles/s41467-022-28483-6
https://phys.org/news/2022-02-artificial-nerve-cells.html?utm_sourc...
A recent study has found that proteins found naturally in tick saliva, called evasins, can be modified to block the activity of important proteins in human inflammatory diseases such as arthritis, asthma and multiple sclerosis.
The study showed it was possible to modify evasins so that they bind to the exact group of disease-promoting human proteins (chemokines), helping to suppress inflammation.
This new discovery opens the door to the development of much needed new therapies for inflammatory diseases.
Inflammatory diseases, such as atherosclerosis, arthritis, psoriasis, asthma and multiple sclerosis, all involve the same underlying phenomenon in which the body's white blood cells attack certain tissues. The white blood cells are attracted to these tissues by a class of proteins (chemokines) that are produced in the affected tissues (e.g. blood vessel wall in atherosclerosis, joints in arthritis). By targeting chemokines, evasins block the movement of white blood cells and the resulting tissue damage.
Typically, each tick species secretes a cocktail of evasins, thereby accomplishing broad-spectrum suppression of the host inflammatory response, presumably enabling the tick to feed for extended periods while not alerting the host to the tick's presence.
However, some chemokines are involved in inflammatory diseases while others are needed for the body's normal immune function. Therefore, for therapeutic applications, it is essential to modify the evasins so they only target the disease-causing chemokines.
Structure-guided engineering of tick evasins for targeting chemokines in inflammatory diseases, Proceedings of the National Academy of Sciences (2022). DOI: 10.1073/pnas.2122105119.
https://medicalxpress.com/news/2022-02-saliva-path-therapies-inflam...
Altruism in birds? Magpies have outwitted scientists by helping each other remove tracking devices
But these poor birds didn't know that scientists are only trying to help them!
When scientists attached tiny, backpack-like tracking devices to five Australian magpies for a pilot study, they didn’t expect to discover an entirely new social behaviour rarely seen in birds.
Scientists' goal was to learn more about the movement and social dynamics of these highly intelligent birds, and to test these new, durable and reusable devices. Instead, the birds outsmarted them!
the magpies began showing evidence of cooperative “rescue” behaviour to help each other remove the tracker.
While we’re familiar with magpies being intelligent and social creatures, this was the first instance we knew of that showed this type of seemingly altruistic behaviour: helping another member of the group without getting an immediate, tangible reward.
During a pilot study, scientists found out how quickly magpies team up to solve a group problem. Within ten minutes of fitting the final tracker, they witnessed an adult female without a tracker working with her bill to try and remove the harness off of a younger bird.
Within hours, most of the other trackers had been removed. By day 3, even the dominant male of the group had its tracker successfully dismantled. We don’t know if it was the same individual helping each other or if they shared duties, but we had never read about any other bird cooperating in this way to remove tracking devices.
The only other similar example of this type of behaviour we could find in the literature was that of Seychelles warblers helping release others in their social group from sticky Pisonia seed clusters. This is a very rare behaviour termed “rescuing”.
Tracking magpies is crucial for conservation efforts, as these birds are vulnerable to the increasing frequency and intensity of heatwaves under climate change.
Now scientists are scratching their heads to figure out how to save these birds without using trackers!
https://www.birdlife.org.au/afo/index.php/afo/article/view/2247
https://www.birdlife.org.au/afo/index.php/afo
https://theconversation.com/altruism-in-birds-magpies-have-outwitte...
IKEA and the fate of a European forestAccidents of geography and history have left Romania with one of the largest old-growth forests remaining in the world. Since around the time the country joined the European Union, however, between one-half and two-thirds of its virgin forest has been logged — most of it illegally. Along with the environmental loss has come violence: forest rangers have been murdered and conservationists working in the area are putting their lives at risk. One multinational company that denies any connection to poor forestry practices is the furniture behemoth IKEA. It is the world’s largest wood buyer and Romania’s largest private landowner (with much of the land purchased from the Harvard University endowment). A New Republic investigation shows how the complexities of land ownership, subcontracted manufacturing and weak oversight make the destruction of Romania’s forests so difficult to stop. |
Bacteria are known for breaking down lactose to make yogurt and sugar to make beer. Now researchers have harnessed bacteria to break down waste carbon dioxide (CO2) to make valuable industrial chemicals.
In a new pilot study, the researchers selected, engineered and optimized a bacteria strain and then successfully demonstrated its ability to convert CO2 into acetone and isopropanol (IPA).
Not only does this new gas fermentation process remove greenhouse gases from the atmosphere, it also avoids using fossil fuels, which are typically needed to generate acetone and IPA. After performing life-cycle analysis, the team found the carbon-negative platform could reduce greenhouse gas emissions by 160% as compared to conventional processes, if widely adopted.
Michael Jewett, Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale, Nature Biotechnology (2022). DOI: 10.1038/s41587-021-01195-w. www.nature.com/articles/s41587-021-01195-w
https://phys.org/news/2022-02-bacteria-upcycle-carbon-valuable-chem...
Silent speech device developed
Researchers conducted experiments using human cells and a mouse model mimicking the cytokine storm seen in some patients with severe COVID-19 infection. They applied CRISPR genome-wide screening to analyze how cell function, in particular cell death, changes when one gene is knocked out (inactivated).
Receptor-interacting protein kinase (RIPK1) plays a critical role in regulating inflammation and cell death. Many sites on this protein are modified when a phosphate is added (a process known as phosphorylation) to suppress RIPK1's cell death-promoting enzyme activity. How the phosphate is removed from RIPK1 sites (dephosphorylation) to restore cell death is poorly understood. This new work discovered that PPP1R3G recruits phosphatase 1 gamma (PP1γ) to directly remove the inhibitory RIPK1 phosphorylations blocking RIPK1's enzyme activity and cell death, thereby promoting apoptosis and necroptosis.
An analogy of a car brake help explain what's happening with the balance of cell survival and death in this study: RIPK1 is the engine that drives the cell death machine (the car). Phosphorylation applies the brake (stops the car) to prevent cells from dying. The car (cell death machinery) can only move forward if RIPK1 dephosphorylation is turned on by the PPP1R3G protein complex, which releases the brake.
In this case, phosphorylation inhibits the cell death function of protein RIPK1, so more cells survive. Dephosphorylation takes away the inhibition, allowing RIPK1 to activate its cell death function.
The researchers showed that a specific protein-protein interaction—that is, PPP1R3G binding to PP1γ—activates RIPK1 and cell death. Furthermore, using a mouse model for "cytokine storm" in humans, they discovered knockout mice deficient in Ppp1r3g were protected against tumor necrosis factor-induced systemic inflammatory response syndrome. These knockout mice had significantly less tissue damage and a much better survival rate than wildtype mice with the same TNF-induced inflammatory syndrome and all their genes intact.
Overall, the study suggests that inhibitors blocking the PPP1R3G/PP1γ pathway can help prevent or reduce deaths and severe damage from inflammation-associated diseases, including heart disease, autoimmune disorders and COVID-19. They are working to screen and identify peptide compounds that most efficiently inhibit the PPP1R3G protein complex. They hope to pinpoint promising drug candidates that may stop the massive destruction of cardiac muscle cells caused by heart attacks.
Jingchun Du, Yougui Xiang, Hua Liu, Shuzhen Liu, Ashwani Kumar, Chao Xing, Zhigao Wang. RIPK1 dephosphorylation and kinase activation by PPP1R3G/PP1γ promote apoptosis and necroptosis. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-27367-5
https://researchnews.cc/news/11713/Researchers-identify-protein-com...
Part 2
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!